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Abstract1

Traffic speed variance is defined as a measure of the dispersion of space mean speeds2
among drivers. Empirical speed-density observations exhibit a structured traffic speed vari-3
ance which has been found to be associated to the road accident rate, the fatality rate, and4
travel time variability. The objective of this paper is to propose a generalized traffic speed5
variance function to describe this structured variance and identify its potential applications. In6
nature, the proposed speed variance function is a response of the speed-density curve with two7
additional parameters. A series of logistic speed-density curve with varying parameters is used8
in the proposed traffic speed variance function with different performances. This traffic speed9
variance model will help to unveil the underlying mechanism of some empirical traffic features10
such as spontaneous congestion or capacity drop.11
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1 Introduction1

1.1 Background2

Nonconstant variability appears in numerous fields of scientific inquiry such as chemical and3
bioassay; traffic flow is no exceptions [1]. The wide-scattering effects in the equilibrium speed-4
density relationship has been popularly recognized by transportation researchers and professionals5
for many years (Referring to Figure 1(a)). The mean curve of the wide-scattering equilibrium6
speed-density relationship (Referring to Figure 1(b)) provoked sufficient modeling efforts using7
both deterministic and stochastic modeling techniques [2] [3]. However, the traffic speed variance8
(or equivalently the speed variability) which has been found to be associated with road accident9
frequency, travel time and its variability on both highway and major arterial roads [4] is not suf-10
ficiently addressed in literature. Lave [5] noted in his paper “Speeding, Coordination, and the11
55 MPH Limit” that traffic speed variance kills, not speed. Based on his state cross-section data12
analysis of 1981 and 1982, he found that there is hardly any statistically discernable relationship13
between fatality rate and average speed, while there is a strong relationship to traffic speed vari-14
ance. A variety of contributing factors (i.e., driver’s lane changing behavior, number of lanes,15
vehicle heterogeneity [4]) affect the traffic speed variance, but the most significant one was identi-16
fied by Garber as the difference between the design speed and the posted speed limit [6]. Instead of17
exploring the mathematical relationship between speed variance and crash rates, this paper focuses18
on the modeling, analysis, and the implications of traffic speed variation regarding the variance19
curve’s nonlinearity and heteroscedasticity. The impetus to model speed variation arose from the20
need to empirically account for the observed traffic dynamics such as wide-scattering plots of the21
empirical fundamental diagram, and the onset of congestion as traffic densities vary. From a safety22
perspective, traffic speed variance directly relates to crash frequency and could help contribute to23
the identification of crash-prone locations on highway and arterial [4] [6] [7] [8].

(a) Speed-Density Scattered Plot (b) Speed Mean and Variance

FIGURE 1 The scattered plot of an empirical speed-density relationship and its mean, vari-
ance curves

24
A qualitative and quantitative description of traffic speed variance is significant to both25

researchers and professionals. Past research efforts related to this topic approached this problem26
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with the following observations: (1) From a policy and safety view, speed variance and speed1
variance reduction are serious considerations for the setting of different speed limits for passenger2
cars, and heavy trucks [9], and highway work zone safety control [10]. Additionally, Graves et3
al [11] proposed a model of the optimal speed limit which explicitly recognized the roles of aver-4
age speed, speed variance, and the enforcement level. (2) From a traffic operation and management5
standpoint, Saifallah [12] showed that the density of maximum throughput is near the density of6
maximum speed variance which agrees with the observation that maximum speed variance occurs7
at the critical density where capacity is usually obtained. Rakha [13] proposed a relationship be-8
tween time mean speed and space mean speed variances, as well as space mean speed and travel9
time variance. Most recently, an on-going research project “Guideline Development for Minimiz-10
ing Operating Speed Variance of Multilane Highways by Controlling Access Design” sponsored by11
the university transportation program is being conducted by the University of South Florida [14].12
One of the project objectives is to quantify the influence of specific access design factors on speed13
variance using statistical techniques for the purpose if improving safety performance. This brief14
review of what has been done and what is ongoing is not intended to be complete but to emphasize15
that a better understanding of traffic speed variance is extremely important to the transportation16
industry.17

1.2 Paper organization18

The remainder of this paper is organized as follows. In Section 2, a novel modeling of the traffic19
speed variance is presented with a focus on the nonlinearity and heterogeneity of the empirically20
observed traffic speed variance. In this context, a generalized traffic speed variance function is21
proposed in Section 2.2 in which the speed variance is a response of the speed-density curve with22
two additional parameters based on the smoothed shape of the speed variance curve (ignoring the23
local kinks).. The choice of the speed-density curves is provided in Section 2.3 in which a series24
of speed-density curves with varying model parameters are presented. In Section 3, the calibration25
of model parameters of the traffic speed variance function and the speed-density function are pro-26
vided. An application example is designed to demonstrate how the proposed traffic speed variance27
model can be applied to estimate travel time and analyze travel time variability in Section 4. In28
Section 5, we briefly summarize our findings.29

2 Novel Modeling of Traffic Speed Variance30

From the structured empirical traffic speed variances (Referring to Figure 2), the traffic speed31
variance is modeled as a response of the speed-density curve with some additional parameters. So,32
we start the formulation of traffic speed variance function with its nonlinearity and heterogeneity.33

34

2.1 The nonlinearity and heterogeneity of speed variance35

In order to model the nonlinearity and heterogeneity exhibited in the structured traffic speed vari-36
ance plots as can be seen from Figures 2 and 3, we considered the errors in the model which can37
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(a) Monday (b) Tuesday

(c) Wednesday (d) Thursday

(e) Friday

FIGURE 2 Weekday change of traffic speed variance from one-year observations at station
4000026 with time aggregation level 5 minutes.
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(a) Monday (b) Tuesday

(c) Wednesday (d) Thursday

(e) Friday

FIGURE 3 Weekday change of traffic speed variance from one-year observations at station
4001118 with time aggregation level 5 minutes
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(a) Saturday/4001118 (b) Sunday/4001118

(c) Saturday/4000026 (d) Sunday/4000026

FIGURE 4 Weekend change of traffic speed variance from one-year observations with time
aggregation level 5 minutes
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be described by1
ε = V (k)− v(k, θ) (1)

in which V (k) is the empirically observed traffic speeds, v(k, θ) is the speeds given by a speed-2
density model. For each value of density k, the model can be rewritten as3

Vil(k) = v(ki, θ) + εil (2)

with l varying from 1 to ni (ni is the number of speed observations over a long time period under4
density ki) and i from 1 to j (kj is jam density). For each value of i, the empirical variance of5
speed can be calculated by6

s2
i =

1

ni

ni∑
l=1

(Vil − Vi∗)
2 (3)

with Vi∗ = 1
ni

∑ni

l=1 Vij . From the empirical traffic speed-density data as shown in Figures 2 and 3,7
the variance of traffic speeds is apparently heterogeneous, so we let V ar(εil) = σ2

i . The model is8
given by the following9

Vil(k) = v(ki, θ) + σ2
i (4)

in which E(εil) = 0, where l = 1, . . . , ni; i = 1, . . . , j; and total number of observations equal10
n =

∑j
i=1 ni. The choice of a specific speed-density model v(ki, θ) is provided in Section 2.3.11

εil are independent Gaussian random variables. ε is, by construction, a random error equal to the12
discrepancy between empirical traffic speed observation V (k) and traffic speed estimated from a13
speed-density model v(k, θ). θ is a vector of p parameters θ1, θ2, . . . , θp.14

As aforementioned, let σ2
i be the traffic speed variance of εil. The values of σ2

i , or their15
variances as functions of traffic density ki, are unknown and has to be approximated. Generally,16
there are two cases in the difference of traffic speed variances: (1) the variance σi − σi+1 is small17
which means the traffic speed variance is relatively stable as traffic density varies. (2) the variance18
σi − σi+1 is large which indicates a large variation of traffic speeds at varying traffic densities.19
If the traffic speed variance σi − σi+1 is small, we feel confident to approximate the variances20
with homogeneity by assuming V ar(εij) = σ2. In the case of a large traffic speed variation21
σi − σi+1, the physical interpretation is that various driver groups (novice/skilled, male/female,22
timid/aggressive) behave differently under changing traffic conditions. The empirical evidences23
as shown in Figures 2 and 3 is apparently against the assumption of homogeneous variances. In24
this case, the real heterogeneous variation of σ2 is approximated by a variance function f such25
that V ar(εij) = v(ki, σ

2, θ, α). In this case, the variance function f is assumed to be dependent26
on the speed-density relationship represented by v(k, θ) in which speed is expressed as a function27
of traffic density plus a parameter set. For example, v(ki, δ

2, θ, α) = σ2v(ki, θ)
α, where α is28

a set of parameters that have to be estimated or assumed to be known already. The estimation29
of the parameter set can be done through a least-square algorithm by minimizing the distances30
between the empirical traffic speeds and speeds estimated from a model. We usually can simplify31
the necessary assumptions by assuming that the vector θp varies in the interior of an interval. The32
function v(ki, θ) is assumed to be twice continuously differentiable with respect to the parameters33
θ [1] [2].34
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2.2 Parametric modeling of the traffic speed variance1

A variance function needs to be determined in order to estimate the heterogeneous traffic speed2
variance. To make the choice of variance function, some qualitative or quantitative indications of3
empirical traffic speed variance are needed [1]. Figure 6 plots the empirical mean of speed-density4
observations over one year and its corresponding speed variance. From Figure 6, we see that the5
variance of the empirical observations first grows as traffic density increase and then decreases6
with the maximum achieved at an intermediate density around the critical density kc(35 → 45)7
(veh/km), which can be depicted by a parabola.8

For an increasing variance, there are essentially two scenarios. The first scenario is that the9
variance varies as a power of the response10

σ2
i = δ2φ(ki, θ, α) = δ2v(ki, θ)

α (5)

The other one is that the variance varies as a linear function of the response11

σ2
i = δ2φ(ki, θ, α) = δ2(1 + αv(ki, θ)) (6)

Judging from the empirical observations of traffic speed variance in the previous section, it is12
found that these two variance functions are not appropriate to model the traffic speed variance with13
a parabola shape.14

For a variance function varying like a parabola as shown in Figures 2 and 3, the most15
generalized function to model the structured speed variance is given by16

σ2
i = δ2 + δ2α1(vmax + α2 − v(ki, θ))(v(ki, θ)− vmin) (7)

in which vmax is the maximum value and vmin is the smallest value of v(ki, θ). Let vmin = 0 and17
the maximum traffic speed vmax be the free-flow speed vf , the variance function for the empirical18
traffic speed variance is given by19

σ2
i = δ2(1.0 + αv(ki, θ)(vf − v(ki, θ))) (8)

in which δ and α are parameters with physical meanings, v(k, θ) is open to all the existing single-20
regime speed-density models listed in [15] such as the Greenshilds model. A slight change to this21
model can be made by replacing the free flow speed term vf with a highway design speed which22
is relatively higher vf , here called vd, will yield the following model23

σ2
i = δ2(1.0 + αv(ki, θ)(vd − v(ki, θ))) (9)

2.3 Choice of speed-density curves and corresponding variance functions24

The proposed function to model the empirical traffic speed variances takes a functional form as25
can be seen from Equations (8) and (9) which in nature is a function of the speed-density model26
with two additional parameters δ2 and α. Thus, the choice of a specific speed-density function27
apparently affects the performance of the variance function.28

The empirical speed-density observations exhibit a reversed ’S’ shape which makes lo-29
gistic modeling a candidate. Therefore, a sigmoidal shape logistical speed-density function was30
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proposed to model the speed-density curve [2]. The logistic speed-density model has a varying1
number of parameters from five to three which results in three distinct traffic speed variance func-2
tions with varying performances as can be seen from Figure 5. The most general five-parameter3
logistic speed-density model (5PLSDM) and the corresponding traffic speed variance function take4
a functional form of5 {

v(k, θ) = vb +
vf−vb

(1+exp(
k−kt

θ1
))θ2

σ2
i = δ2(1.0 + αv(k, θ)(vf − v(k, θ)))

(10)

(a) 5PLSDM/4001118 (b) 5PLSDM/4001119

(c) 4PLSDM/4001118 (d) 4PLSDM/4001119

(e) 3PLSDM/4001118 (f) 3PLSDM/4001119

FIGURE 5 Performance of the logistic speed-density models fitted to the same set of empirical
data from station 4001118 and 4001119

6
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We found that the logistic speed-density function describes the empirical data [2]. This1
is the most general five-parameter logistic speed-density model (5PLSDM) in sigmoidal shape.2
In which, vf and vb are the upper and lower asymptotes respectively. Specific to our case, vf3
represents free flow speed. vb is the average travel speed under stop and go conditions. This4
parameter assumes that traffic has finite movements even in congested situations [16]. θ1 is a scale5
parameter which describes how the curve is stretched out over the whole density range, and θ2 is6
a parameter which controls the lopsidedness of the curve. The parameter kt is the turning point at7
which the speed-density curve makes the transition from free-flow to congested flow.8

A four-parameter logistic speed-density model (4PLSDM) is obtained by reducing the pa-9
rameter θ2 and its corresponding variance function is given by10 {

v(k, θ) = vb +
vf−vb

1+exp( k−kc
θ1

)

σ2
i = δ2(1.0 + αv(k, θ)(vf − v(k, θ)))

(11)

The physical meaning of the other parameters remains unchanged. Different from the 5PLSDM,11
the 4PLSDM captures the critical traffic density kc instead of kt. The three-parameter logistic12
speed-density model (3PLSDM) can be obtained by removing the user-specified average travel13
speed at stop-and-go traffic conditions and the variance function based on this 3PL curve is given14
by15 {

v(k, θ) =
vf

1+exp( k−kc
θ1

)

σ2
i = δ2(1.0 + αv(k, θ)(vf − v(k, θ)))

(12)

The generalized four-parameter logistic speed-density model (asymmetric sigmoidal func-16
tion) results from the integration of the differential equation17

dv

dk
= cv[1− (

v

vf

)γ] (13)

which mimics the form of the so-called Nelder’s model [17]. The constant vf is the free-flow speed,18
and the constant γ > 0 is the asymmetry coefficient, when γ = 1, the equation (13) turns into the19
well-known logistic model [18]. Similarly, the three-parameter logistic speed-density model can20
be obtained from the differential equation (13) by setting γ = 121

dv

dk
= cv(1− v

vf

) (14)

Equation (14) has been found to be a more meaningful form of the logistic function in describing22
the growth pattern dynamics [19] such as plant and population growth. The performance of 5PL,23
4PL, and 3PL is referred to Figure 5, interested readers can find more detailed information regard-24
ing the logistic modeling of speed-density relationship in [2]. In this paper, we only considers the25
performance of the variance function in which the five-parameter logistic speed-density model is26
applied. For the other two cases, they are just minor changes of model parameters.27

3 Calibration of Model Parameters28

As aforementioned, the modeling of traffic speed variance is dependent on the speed-density rela-29
tionship. Figure 6 shows the performance of the proposed variance function with a five-parameter30
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logistic speed-density model when compared to empirical data, instead of plotting the variance1
curve, this figure plots the standard deviation of traffic speed and the same from the variance func-2
tion. It is found that the proposed variance function tracks empirical variance faithfully. Table 1

(a) 4001136 (b) 4001137

(c) 4001138 (d) 4001139

FIGURE 6 Approximated standard deviation (std) plotted against empirical std
3

listed the optimized model parameters for the proposed variance function. The model parameters4
in the speed-density model are obtained through an iterative least-squares procedure while the two5
additional parameters in the variance function are obtained by a maximum likelihood estimation6
method since we assume the error term εi is a Gaussian variable. The quasi-likelihood estimation7
is provided for those who have particular reason to question the Gaussian assumption. For more8
details about the statistical estimation techniques, interested readers are referred to [1]. From the9
magnitude of the estimated parameters particularly δ2 and α, we observe that δ2 is relatively stable10
while α suffers a large variation. The existence of a constant term in the variance model, in this11
case δ2, can be explained in both practical and theoretical ways. The physical meaning of δ2 is12
the maximum possible variance when traffic density is nearly 0 (corresponds to free flow condi-13
tion). This implies the fact that drivers from different driver groups (aggressive or cautious, old or14
young) have their own preferred free flow speed. And this location-specific parameter is dependent15
on empirical data. To frame it in a more theoretical sense, the existence of this parameter can be16
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(a) (b)

FIGURE 7 Performance of the variance function with a five-parameter logistic speed-density
model different free flow speed: (a) δ2 = 1.3, α = 0.002 , vd = 120(km/hr) and (b) δ2 =
1.2033, α = 0.0014, vf = 107.44(km/hr)

verified by a likelihood ratio test by expressing the hypothesis as {δ2 = 0}, the results signify a1
better fit when {δ2 6= 0}.2

4 Applications of Speed Variance Models3

Most of the identified applications of a traffic speed variance model points to a safety side such4
as how fatality rate and crash rate is a function of speed variance and other factors. For example,5
Lave [5] found that speed variance has more effect on fatalities than traffic speed does in which6
fatality rate is a function of traffic speed, speed variance and other factors. For more information7
regarding such a relationship, interested readers are directed to [5] for details. For a relationship8
between freeway speed variance with lane changing behavior, or with vehicle heterogeneity, inter-9
ested readers are referred to [4]. Different from the applications aforementioned, this paper tries to10
explore how a speed variance model can help estimate travel time and its variability.11

4.1 Simulation Test Bed for Validation of the Speed Variance Model12

The travel time variance model, which is developed as an important application of the proposed13
speed variance model, needs to be validated before it can be applied in practice to predict the range14
of travel time for freeway traffic information management. Due to the lack of field-collected travel15
time data of individual vehicles, microscopic simulation tool VISSIM is used in this research to16
generate both detector data and vehicle’s travel time data. Considering that the travel time variance17
model is a general model which is expected to be applied to any types of freeways, an existing18
urban freeway simulation model provided along with the installation of VISSIM is directly used19
as the simulation test bed for this research.20

As illustrated by Figure 8, the simulation model represents a 3.1-mile segment of I-405 in21
Redmond, Washington. The detectors are placed near the entrance of the northbound approach,22
which is noted by the green dot in Figure 8. The travel time section begins at the location of the23
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TABLE 1 Optimized parameters for the traffic speed variance function and the five-
parameter logistic speed-density model (speed vf in km/hr, density kt in veh/km), S represents
Stations, 01-39 is abbreviated from 4001101 to 4001139, 25-63 is abbreviated from 4000025
to 4000063

S δ2 α vf kt θ1 θ2 S δ2 α vf kt θ1 θ2

01 1.2 0.0014 107.44 17.53 1.8768 0.0871 25 1.2 0.005 96.09 20.04 3.6202 0.1323

02 1.2 0.004 99.92 16.12 2.1098 0.0947 26 1.3 0.003 99.93 20.34 3.0470 0.1269

03 1.4 0.010 106.89 14.40 1.7388 0.0714 27 1.3 0.04 96.14 22.89 4.5292 0.1941

04 2.4 0.008 47.52 32.61 0.1188 0.1835 28 1.3 0.006 99.88 14.30 0.2418 0.0106

05 1.3 0.004 86.57 24.39 1.0094 0.0401 29 1.1 0.003 106.80 16.95 2.4325 0.1059

06 1.6 0.003 92.71 21.72 3.9212 0.1835 30 1.6 0.005 91.04 22.21 3.2091 0.1138

07 1.4 0.002 99.39 21.26 3.8762 0.1928 31 1.8 0.002 88.99 28.77 5.1484 0.1499

08 1.5 0.013 95.06 20.33 3.15 0.1628 32 1.3 0.003 97.05 19.61 2.2104 0.0746

09 1.1 0.002 111.06 17.01 2.5501 0.1074 33 1.4 0.002 95.69 22.43 3.0685 0.1249

10 1.3 0.012 96.16 19.03 2.0220 0.0938 34 1.3 0.007 98.05 22.24 4.4141 0.1688

11 1.3 0.009 97.64 17.52 2.2787 0.0899 35 1.1 0.005 107.96 21.24 4.1009 0.1736

12 1.2 0.008 100.67 12.63 2.0386 0.0899 36 1.4 0.009 101.92 21.67 3.7766 0.1478

13 1.3 0.006 103.02 15.52 2.0674 0.0857 37 1.3 0.008 98.47 21.07 3.7207 0.1326

14 1.3 0.010 98.97 20.20 3.1219 0.1179 38 1.2 0.005 106.31 19.42 4.6129 0.1802

15 1.3 0.009 98.60 17.69 3.0240 0.1202 39 1.1 0.006 110.36 17.44 3.8358 0.2096

16 1.2 0.004 105.51 16.48 3.3903 0.1404 40 1.2 0.008 108.57 16.86 2.6591 0.1181

17 1.3 0.006 99.35 13.25 1.8755 0.0926 41 1.3 0.004 105.64 19.89 3.3156 0.1181

18 1.3 0.004 102.12 18.99 3.34 0.1231 42 1.3 0.008 105.40 18.67 3.8394 0.1387

19 1.4 0.007 98.08 19.97 3.53 0.1300 43 1.0 0.009 109.58 18.19 2.7535 0.1140

20 1.2 0.005 104.22 18.06 3.3054 0.1110 44 1.4 0.015 99.68 19.64 2.7885 0.0995

21 1.4 0.008 100.06 19.22 3.3051 0.1189 45 1.3 0.009 101.67 18.83 2.7745 0.0985

22 1.3 0.007 100.06 19.22 3.3051 0.1189 46 1.1 0.005 108.45 17.83 2.6356 0.1199

23 1.3 0.010 97.45 20.98 4.9820 0.1901 47 1.2 0.008 108.24 15.25 2.4505 0.1259

24 1.1 0.003 114.36 17.55 4.7015 0.1901 48 1.3 0.006 101.68 21.37 4.5757 0.1254

25 1.5 0.013 89.34 17.42 5.3515 0.2271 49 1.4 0.014 96.72 17.79 5.2587 0.1696

26 1.2 0.010 110.55 12.29 2.0450 0.0714 50 1.7 0.016 87.05 21.47 3.5007 0.1060

27 1.4 0.012 99.11 22.67 5.3573 0.1994 51 1.5 0.008 95.37 16.70 2.4823 0.1341

28 1.4 0.009 98.08 28.67 6.61 0.4005 52 1.3 0.012 102.50 15.05 1.7244 0.0810

29 1.3 0.008 104.20 22.27 4.82 0.1787 53 1.3 0.008 99.22 17.10 1.7835 0.0716

30 1.3 0.008 105.09 24.04 5.5045 0.2693 54 1.5 0.012 89.83 17.75 1.8373 0.0623

31 1.5 0.007 97.72 23.90 5.1731 0.2009 55 0.9 0.005 137.75 15.72 1.2974 0.0512

32 1.6 0.012 95.57 22.53 4.4708 0.1535 56 1.3 0.006 97.12 15.72 1.2974 0.0512

33 1.9 0.015 72.32 21.28 1.2734 0.0341 57 1.6 0.008 87.67 16.91 1.2206 0.0512

34 1.5 0.018 92.66 21.17 5.0568 0.1681 58 1.4 0.009 94.76 16.73 1.8321 0.0618

35 1.2 0.016 103.94 11.24 2.7827 0.0653 59 1.2 0.014 102.27 13.37 1.5524 0.0650

36 1.8 0.008 88.81 19.97 3.8557 0.1687 60 1.4 0.010 91.08 19.45 2.0860 0.0592

37 1.4 0.013 101.40 14.28 3.7376 0.1380 61 1.3 0.012 91.40 20.18 2.6633 0.0911

38 1.3 0.009 99.64 18.22 3.67 0.1413 62 1.3 0.008 94.35 15.14 1.8434 0.0604

39 1.4 0.011 102.99 17.87 3.45 0.1410 63 1.2 0.006 108.43 13.53 1.1753 0.0450
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FIGURE 8 The Vissim simulation test bed

detectors and ends at the end of the northbound approach as noted by the red dot in Figure 8. There1
are three lanes at the location of detectors and four lanes at the end of the travel time section. Be-2
fore running the simulation, most parameters of the simulation remain unchanged, except that the3
free-flow 85th percentile speed is set to 68 mph rather than the default value of 55 mph. Meanwhile,4
traffic volumes are dynamically assigned at different time periods throughout the simulation. To-5
tally, 10 simulation runs are conducted using different random seeds while each simulation lasts6
4500 seconds.7

VISSIM outputs the aggregated detector data including the average speed and the average8
count of vehicles for every 60 seconds. It also outputs each individual vehicle’s travel time when9
the vehicle passes the end point of the travel time section. However, VISSIM does not have the10
function to associate individual vehicle’s travel time with the detector data of the time period when11
the vehicle passes the detectors. In order to realize this, a data preprocessing has been conducted12
with the help of SQL and ACCESS database. As a result, the average volume and speed of the13
time period when the individual vehicle passes the detector is finally linked with the vehicle’s14
travel time, which provides the ground truth data support for validating the travel time variance15
model. To better verify the validity of the VISSIM simulation model, a fundamental flow-density16
and speed-density relationship is plotted from the VISSIM output data as can be seen in Figure 9.17

4.2 Results Analysis18

To facilitate the validation of the proposed traffic speed variance model, the authors tried two19
approaches to generate the travel time and travel time variation: (1) The first one is through a20
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FIGURE 9 The fundamental flow-density and speed-density relationship generated from
VISSIM simulation data

VISSIM simulation model (or simulation) in which the highway and vehicle characteristics are1
specified. For a given length of highway segment, each individual vehicle’s travel time is recorded2
so that the mean travel time and travel time variability can be calculated. (2) The alternative way is3
through the traffic speed variance model (or model), as aforementioned, the proposed traffic speed4
variance model is a function of the speed-density response curve. Particular to this application, we5
used the five-parameter logistic speed-density model and its corresponding traffic speed variance6
curve. To be specific, the mean travel time estimated from the model is obtained by dividing the7
length of highway segment over the mean travel speed given by the five-parameter logistic speed-8
density model. The travel time variation are captured through the proposed traffic speed variance9
model; for any given traffic density, the traffic speed variance at each density can be obtained from10
the proposed variance function thus the travel time variation can be estimated. In nature, no matter11
the traffic speed or the speed variance is a function of traffic density associated with additional12
parameters such as the free-flow speed, the stop-and-go speed at congested conditions, the scale13
and shape parameters in both the speed and the speed variance function. The traffic density value14
from the simulation VISSIM simulation model is recorded for use in the traffic speed variance15
model to estimate travel time variability.16

A quick comparison of the mean travel time from the VISSIM simulation model and from17
the traffic speed variance model is demonstrated in Figure 10, the residual of the two mean travel18
time is plotted underneath as well. Figure 10(a) shows that the mean travel time from both the VIS-19
SIM simulation model and the traffic speed variance model matches with each other for most of20
the samples, but indeed there are some travel times showing a larger gap which can be statistically21
treated as outliers. In addition, the comparison result is also dependent on the choice of the model22
parameters such as vf , vb, kt, θ1, θ2, α, δ. Most of the model parameters are physically meaning-23
ful and can be calibrated from empirical observations. Table 1 shows the calibrated parameters24
from the empirical observations on George state route 400 in the year of 2003. The calibration25
and estimation of model parameters is not the focus of this paper, interested readers are directed26
to [1] [20] for details regarding Levenberg-Marquardt algorithm and Maximam Likelihood Esti-27
mation method. The comparison of the travel time variance from the VISSIM simulation model28
and the traffic speed variance model is shown in Figure 10(b). From the comparison, it is worth29
mentioning that the travel time variance estimated from the traffic speed variance model is some-30
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(a) Mean Travel Time Comparison (b) Travel Time Variation

FIGURE 10 Comparison of the mean travel time (“+” representing the proposed model re-
sult and the dot is simulation result, the same for variances) and travel time variation from
simulation and the speed variance model

how affected by the choice of model parameters, but this parameter-dependency does not degrade1
the potential benefits of the proposed traffic speed variance model. On the contrary, the choice2
of suitable model parameters gave the users flexibility in the application domain. In general, this3
simple illustrative example indicates that the traffic speed variance model is functional in terms of4
estimating mean travel time and its variability.5

5 Conclusion and future remarks6

This paper proposed a generalized variance function to model empirical traffic speed variance. The7
variance function captures the nonlinear and heterogeneous nature of a parabolic shaped variance.8
The variance function has two features: it is dependent on the speed-density curve and it con-9
tains two additional parameters which have to be set either as constants for simplification or to be10
estimated from empirical data.11

The major findings of this research are:12

1. The structured traffic speed variance is the results of naturally occurring macroscopic traffic13
conditions. The empirical variance takes a parabolic shape which first increases to a local14
maximum and then decreases as traffic density increases.15

2. The pattern of structured traffic speed variance is different between weekdays and weekends.16
It is found that this pattern is consistent on either weekdays (from Monday to Friday) or17
weekends (Saturday and Sunday), but this proposed speed variance model works better for18
weekdays than weekends data.19

3. A parametric traffic speed variance function is used to model traffic speed variance in terms20
of its nonlinearity and heterogeneity. The model parameters are calibrated through empirical21
data.22
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4. The proposed variance function match the empirically observed traffic speed variances. In1
particular, the five-parameter logistic speed-density model and its corresponding speed vari-2
ance function describes the empirical variance accurately.3

5. The application example shows that the proposed traffic speed variance model is capable of4
estimating the travel time and its variability which has been verified by the designed VISSIM5
simulation example.6
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