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for the length of the CY (3); the Traffic Signal Timing Manual, which 
provides a comprehensive overview of signal timing practices, puts 
forth the same ITE equation (4). However, there are still agencies that 
apply alternative approaches to determining the length of the CY. 
Regardless of the approach used, the initiation of the CY indication 
at the wrong time can contribute to DZ conflicts.

An accurate identification of where the DZ exists would allow 
engineers to reduce the frequency with which drivers are caught in 
the DZ. Numerous technologies have been developed to identify 
when a vehicle is in the DZ and then to delay the presentation of the 
CY indication until there are no vehicles, or few, in the DZ. These DZ 
protection systems tend to operate with a predetermined description 
of where the DZ exists, and their success is based in part on the 
accuracy of that placement. Yet, there are multiple definitions that 
have been used to describe where the DZ occurs.

The most commonly applied definition is based on a driver’s 
decision to stop; this definition identifies the downstream edge of 
the DZ as the place where 10% of drivers stop and the upstream edge 
as the place where 10% of drivers continue (5). The other primary 
definition is based on a vehicle’s time to stop line (TTSL); this defini-
tion describes the DZ as 2.5 to 5.5 s from the intersection (6). Recent 
research suggests that these two definitions result in different DZ 
locations on the same approach (7).

This research aimed to improve the identification of the DZ, 
as it is a critical factor in efficient and safe operations at signalized 
intersections. A DZ definition that is too broad can hinder signal 
operations, while a narrowly defined DZ can unnecessarily expose 
vehicles to DZ conflicts and reduce safety performance. Building 
on the work of Hurwitz et al. (8), this research used fuzzy logic (FL) 
as an analytical tool for improving DZ identification. Hurwitz et al. 
proposed a model based strictly on vehicle position that demonstrated 
the potential for improved DZ identification. The present research 
exploited the capabilities of a high-fidelity driving simulator to 
measure vehicle position and speed 15 times per second to develop 
a more accurate model of the DZ. Additionally, the data on the 
probability of stopping were compared with data from the previous 
naturalistic experiments of Hurwitz et al. (8, 9) and the test-track 
experiments of Rakha et al. (10). The deceleration data were compared 
with those reported by Gates et al. (11).

BACKGROUND

To appreciate the implications of modeling driver behavior in the DZ, 
it is critical to consider how drivers respond to the CY and how fuzzy 
logic can be used to model human decision making.
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A Type II dilemma zone (DZ) is the segment of roadway on the approach 
to an intersection at which drivers have difficulty deciding whether to 
stop or proceed at the onset of the circular yellow (CY) indication. 
The safety of signalized intersections is improved when DZs are correctly 
identified and steps are taken to reduce the likelihood that vehicles 
will be caught in such zones. This research purports that using driving 
simulators as a means of collecting driver response data at the onset of 
the CY indication is a valid methodology for augmenting analysis of 
decisions and reactions made within the DZ. The data obtained were 
compared with data from previous experiments documented in the 
literature, and the evidence suggested that driving simulation was 
valid for describing driver behavior under the given conditions. After 
the data were validated, fuzzy logic was proposed as a tool for mod-
eling driver behavior in the DZ, and three models were developed 
to describe driver behavior as it relates to the speed and position of 
the vehicle. These models were shown to be consistent with previous 
research on this subject and were able to predict driver behavior with 
up to 90% accuracy.

A Type II dilemma zone (DZ) is the segment of roadway on the 
approach to a signalized intersection at which drivers have difficulty 
deciding whether to stop or proceed when presented with the circular 
yellow (CY) indication. The conflicts created in the Type II DZ, 
or indecision zone, result in increased rear-end crashes caused by 
abrupt braking and in right-angle or left-turn head-on collisions 
caused by poor estimates of intersection clearance time. Although 
inadequate signal timing or driver failure to comply with signal 
operation (through either disobedience or distraction) can result 
in collisions, DZ conflicts have a significant negative effect on the 
overall safety at signalized intersections. Some researchers have 
even proposed that the number of vehicles caught in the DZ is a 
surrogate measure for safety performance (1). Despite the impli-
cations of these conflicts, there is no national standard to properly 
address this issue.

The Manual on Uniform Traffic Control Devices provides a range 
of durations for the yellow change interval and information relating 
the meaning and sequence of the CY indication (2). In the absence 
of a national standard, ITE has developed a recommended equation 
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Driver Response to the CY

Several research efforts have focused on improving the understand-
ing of driver behavior in response to the CY indication. Rakha et al. 
used data from test-track experiments to gain a better understanding 
of driver behavior at the onset of the CY (10). They found that the 
probability of stopping varied from 100% at a TTSL of 5.5 s to 9% 
at a TTSL of 1.6 s.

Gates et al. performed field observations on more than 1,000 vehi-
cles that were the first to stop or last to go at the termination of priority 
for that approach (11). These authors evaluated the effects of several 
variables on the decision to stop or go and reported that the factor with 
the most influence on driver decision making was the estimated TTSL, 
with the following conditions associated with a higher probability 
of stopping: shorter yellow interval, longer cycle lengths, vehicle 
type, presence of opposing roadway users, and absence of vehicles in 
adjacent through lanes (11).

Liu et al. found that the length and location of the DZ varied with 
the speed of the vehicle, reaction time, and the operational tenden-
cies of different driving populations (12). The authors also found 
significant differences between the observed size and location of the 
DZ and theoretical estimates. The need to reduce or eliminate that 
difference shows the need for a new method, such as FL, to more 
accurately model the DZ.

Fuzzy Logic

FL is based on the idea that humans are capable of highly adaptive 
control, even though the inputs used are not always precise. In an 
attempt to mimic the human decision-making process, FL was devel-
oped to make decisions on the basis of noisy and imprecise informa-
tion inputs. Kaehler explains, “FL provides a simple way to arrive 
at a definite conclusion based upon vague, ambiguous, imprecise, 
noisy, or missing input information” (13). Typically, fuzzy systems 
rely on a set of if–then rules paired with membership functions used 
to describe input and output variables. In short, the fuzzy rules work 
to fuzzify and aggregate the input values, convert them into terms 

of output variables, and finally defuzzify the values of the output 
functions (14).

Research efforts have focused on using FL to better model and 
understand the behavior of drivers as they interact with traffic control 
devices such as traffic signals (8, 15). As drivers approach a signal-
ized intersection, they must base their actions on assumptions about 
their speed, deceleration–acceleration capabilities, distance from 
the intersection, and duration of the currently displayed indication. 
Furthermore, drivers must continuously make these approximations 
during the approach to the intersection. These conditions make this 
form of driver behavior a candidate for FL modeling.

The research reported here builds and expands on the work of 
Hurwitz et al. (8), which focused on using fuzzy sets to better describe 
driver behavior in the DZ. The previous research effort used field 
data—specifically, the distance to the stop line at the onset of the  
CY indication—from approaches to high-speed signalized inter
sections in Vermont to build an FL model. With results comparable 
to the previous efforts of Rakha et al. (10), the authors argue that 
the FL model more effectively accounts for driver behavior in the 
DZ than previous models.

METHODOLOGY

Driving Simulator

The Oregon State University driving simulator is a high-fidelity 
simulator consisting of a full 2009 Ford Fusion cab mounted on 
top of a pitch motion system. The pitch motion system accurately 
models acceleration and braking events. Three projectors produce a 
180° front view, and a fourth projector displays a rear image for the 
driver’s center mirror. The two side mirrors have liquid crystal dis-
plays. The vehicle cab instruments are fully functional and include 
a steering control loading system to accurately represent steering 
torques based on vehicle speed and steering angle. The simulator 
software can record performance measures such as speed, position, 
brake, and acceleration at a sampling rate of 60 Hz. The simulator 
is pictured in Figure 1.

(a) (b)

FIGURE 1    Oregon State University driving simulator.
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Scenario Layout and Intersection Control

The experiment was designed to maximize the number of DZ conflicts 
while limiting the driving time spent in the simulator. To validate the 
measurements of driver response to the CY indication, the roadway 
cross section and adjacent land use were designed to be consistent 
with the previous work by Rakha et al. (10) and Hurwitz et al. (7). 
In both cases, roadway cross sections consisted of two lanes in the 
direction of travel, a substantial clear zone, and minimal development 
of adjacent land. The experiment by Rakha et al. required participants 
to drive along a test track at 45 mph; the observed speed for the 
85th percentile in the study by Hurwitz et al. was 57.5 mph. With those 
speeds in mind, the experiment was divided into two parts: one with 
a posted speed of 45 mph and one with a posted speed of 55 mph.

Within each speed condition, drivers were exposed to the CY 
indication at various locations on their approach to the intersection. 
Because the prevailing DZ definition uses a measure of TTSL, the 
presentation of the CY indication was varied on the basis of the TTSL 
of the vehicle. To adequately cover the range of potential DZ conflicts, 
each driver was presented with the CY indication at 11 different 
TTSL values ranging from 1 to 6 s at half-second intervals. This was 
accomplished by placing time-to-contact sensors at each signalized 
intersection that would terminate the green indication at the desired 
TTSL. A series of 22 approaches, each separated by roughly 2,000 ft 
of roadway, were modeled, forming a large figure eight.

The number of participants assigned to traverse the high-speed 
or the low-speed portion of the track first was counterbalanced. To 
further eliminate confounding effects caused by the order of expo-
sures, each participant was exposed to a randomly generated order 
of TTSL CY indication triggers.

A data collection sensor placed on the approach to each intersection 
tracked specified parameters from 650 ft away from the stop line 
until the vehicle cleared the intersection. The following parameters 
were recorded at 15 Hz (15 times per second):

•	 Time,
•	 Speed (instantaneous),
•	 Position (instantaneous),
•	 Acceleration–deceleration (instantaneous), and
•	 Signal indication.

Texting as a Distraction

To reduce the likelihood that participants would deduce the primary 
research question of the study and thus potentially alter their behavior 
in response, they were asked to complete several texting tasks while 
traversing the route. As drivers approached the horizontal curves, 
they were presented with a message on a billboard. Each message 
was a phrase or movie title in which one of the key words was left 
out, and the participants were asked to send a text message contain-
ing the missing word to a phone number they were given prior to 
experimentation.

Participants

Thirty drivers (17 male and 13 female) were used to develop and vali-
date the FL model. An overrepresentation of college-aged students 
in the experiment resulted in a relatively young subject population 
(average age of 24.5 years). Because of this overrepresentation, the 

applicability of the results of this study to a wider driving population 
may be limited; however, the data are adequate for demonstrating 
the research methodology and model accuracy.

DATA ANALYSIS AND RESULTS

Vehicle Trajectory

Several time–space diagrams were developed to help understand 
driver responses to the CY indication. Figure 2 shows vehicle tra-
jectories, with each line representing the path of a single vehicle 
approaching the intersection. In this figure, distance is mapped on 
the vertical axis and time on the horizontal axis, meaning that the 
slope of the line represents velocity and the curvature indicates 
acceleration–deceleration.

In Figure 2a, the vehicles positioned closest to the stop line at 
the onset of the CY indication are more likely to proceed through 
the intersection, while those farther back are more likely to stop. For 
vehicles that stop, the degree of curvature of the line is an indication 
of the deceleration rate that was experienced to bring the vehicle 
to a complete stop. In this figure, it can be seen that some vehicles 
decelerated at a higher rate than others in order to stop before the 
stop line.

These figures assist in identifying inconsistent behavior for an 
individual driver. In Figure 2a, it is observed that the driver chose 
to stop the vehicle when it was roughly 200 ft away from the inter-
section at the onset of the CY but then chose to proceed through the 
intersection when it was roughly 250 ft away at the onset of the CY. 
This inconsistency points toward some degree of indecision for the 
driver in this region on the approach to the intersection.

Another way to visualize this type of data is to display the trajec-
tories for all of the drivers on a single plot. By making each figure 
represent a single TTSL threshold, one can gain insight into where 
inconsistent behavior occurs. Figure 2, b, c, and d, provides trajec-
tory data for all subjects at three TTSL thresholds (1 s, 3.5 s, and 6 s, 
respectively).

In Figure 2b, it can be seen that vehicles close to the intersection 
at the onset of the CY indication consistently proceed through well 
before presentation of the circular red indication. Figure 2c shows 
that drivers behave in a less consistent manner when they are 3.5 s 
away from the intersection, sometimes continuing and sometimes 
stopping. This figure also shows variability in the location at which 
vehicles completed their stop—some of which may be attributed to 
a poor selection of deceleration—but mostly shows differences in 
how drivers perceived their position relative to the stop line. Figure 2d  
shows that almost every driver stops when 6 s away from the inter
section at the onset of the CY indication. It can be seen that there 
were two instances of red light running.

Driver Decision Making

A driver’s decision to stop before the intersection or proceed through 
the intersection is the foundation for developing models to describe 
the DZ. Both speed and position are highly influential to a driver’s 
decision; therefore, driver behavior is presented in relation to the 
TTSL (which includes both factors). It was observed that all drivers 
proceeded when they were 2 s or less from the intersection at the 
onset of the CY indication. This finding is consistent with the findings 
of Chang et al. (6) and Gates et al. (11), who found that nearly all 
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vehicles proceeded through the intersection when they were 2 s or 
less from the intersection at the onset of the CY. At a TTSL of 4.5 or 
greater, most drivers (93%) stop before the intersection.

By changing the independent variable from TTSL to vehicle posi-
tion, the driver’s decision data can be compared with empirically 
observed data sets used by Rakha et al. (10) and Hurwitz et al. (7). 
Figure 3 shows the probability of stopping for all three experiments, 
one of which was conducted in the field, one on a test track, and one 
in a driving simulator.

A two-sample Kolmogorov–Smirnov test was used to compare 
the three distributions. It was found that there were no statistical 
differences in the distributions from the research by Hurwitz et al. 
(7) and the present research (95% confidence level), and that the 
distribution from Rakha et al. (10) did not share a continuous dis
tribution with either study (95% confidence interval). The curve 
generated for this research is similar in spread to the curve generated 
by Hurwitz et al. (7) and similar in shape to the curve generated by 
Rakha et al. (10). The shift to the left associated with the Rakha et al. 

curve could be attributed to a lower operating speed and a reduced 
distance range during data collection.

Deceleration Rates

Deceleration rates are of critical importance in the evaluation of 
drivers’ decisions to stop or go. The ITE equation for the timing of 
the change interval incorporates an assumption for a comfortable 
deceleration rate (10 ft/s2) (3). To support the validity of using a driv-
ing simulator to evaluate driver behavior in this way, the observed 
deceleration rates must be comparable to that threshold as well as to 
other studies of this nature. Average deceleration rates were calcu-
lated as the speed at initial brake application divided by the time it 
took to come to a complete stop. Figure 4 plots the cumulative distri-
bution of deceleration rates for this study and several previous field 
studies. As shown, the deceleration rates from the present simulated 
experiment are consistent with previous field research.

(a) (b)

(c) (d)
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FIGURE 2    Vehicle trajectories in response to CY: (a) single participant trajectories at 45 mph, (b) 30 vehicle trajectories for TTSL = 1 s, 
(c) 30 vehicle trajectories for TTSL = 3.5 s, and (d) 30 vehicle trajectories for TTSL = 6 s.
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FIGURE 3    Probability of stopping.
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Table 1 provides summary statistics associated with the decelera-
tion rates determined from the present research as well as the studies 
displayed in Figure 4. Deceleration rates for the present experiment 
appear to be slightly higher than those reported by Gates et al. (11); 
however, they appear to fall within the range of values reported by 
other studies. Table 1 demonstrates the comparability of these data to 
those obtained from field observations. The 95% confidence intervals 
calculated and included in Table 1 indicate no statistical difference 
in the mean deceleration rates found in the present study and in the 
research by Gates et al. (11). This finding provides preliminary evi-
dence to support the validation of the driving simulator for research 
concerning driver response to traffic signals on tangent road segments.

Fuzzy Logic Model

This section presents the use of FL to model the DZ and the model’s 
ability to predict a driver’s behavior given certain parameters. The 
FL models were created and validated with the use of the FL toolbox 
available in MATLAB.

The MATLAB toolbox allows the software to determine specific 
membership function parameters for both input and output variables 
(and the rules relating them) to be selected on the basis of a training 
process. An adaptive neuro-fuzzy inference system is used to develop 
an FL model that is based on a set of training data. For this research, 
behavior data from 15 randomly selected drivers were used to train 
the creation of the FL model, and data from the remaining 15 drivers 
were used to validate the model and evaluate its predictive power.

The models presented in the following sections are founded on 
position or a combination of speed and position.

Position-Based FL Model

The first FL model developed was based exclusively on a vehicle’s 
distance to the stop line at the onset of the yellow indication (position).  
The previously described process for developing the FL model results 
in the creation of a curve showing the probability of stopping, as 
shown in Figure 5.

Various shapes were evaluated, and it was determined that trap-
ezoidal input membership functions best described these data. The 
more membership functions that are included to describe each input 
variable, the more closely this surface will resemble the shape of the 
raw data. However, if too many membership functions are used, the 
model will lose predictive ability. With these conditions in mind, 
three membership functions defined as Equations 1, 2, and 3 were 

used to describe the input variable of vehicle position (VP) in this 
model. This fuzzy subset is consistent with previously documented 
efforts by Hurwitz et al. in which the three membership functions 
were described as “close, middle, and far distance” (8).
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After creating and training the FL model, MATLAB can evalu-
ate new input data and provide the output value determined by the 
model. Position data from the second 15 drivers were input into the 
model, and for each interaction with the signal, the probability of 
stopping was reported. A probability of stopping greater than .5 was 
interpreted to identify a condition resulting in a vehicle stopping 
before the intersection, and a value less than .5 was interpreted as a 
condition in which the vehicle continued through the intersection. 
These values were compared with the actual observed behavior of 
the second 15 drivers, and the predictive power of this model was 
determined.

As shown in Table 2, the position-based FL model correctly pre-
dicted the behavior for the remaining 15 drivers with an accuracy of 
88%. This result is slightly better than the 85% accuracy presented 
by Hurwitz et al. for their position-based FL model (8). Raw data 
from the 2012 field study were obtained and evaluated according to 
this position-based model, and the results were virtually identical 

TABLE 1    Deceleration parameters

95% CI Deceleration Rate

Study Year Mean SD Low High 15% 50% 85%

Moore and Hurwitz 
  (present study)

2012 11.7 4.0 3.62 19.78 8.0 10.5 15.8 

Gates et al. (11) 2006 10.1 2.8 4.44 15.76 7.2   9.9 12.9

Chang et al. (6) 1985   9.5 — — — 5.6   9.2 13.5

Wortman and Matthias (17) 1983 11.6 — — — 8.0 11.0 16.0

Note: SD = standard deviation; CI = confidence interval; — = data could not be acquired from published study.
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to those reported by Hurwitz et al. Table 2 also provides insight as to 
where the model is more prone to generating errors; in this case, the 
majority of the errors (71%) occurred when the model incorrectly 
predicted a vehicle would stop.

Vehicle Speed and Position FL Model

A new FL model was then created by adding speed as a second input 
variable. The addition of a second input variable creates a three-
dimensional surface to describe a vehicle’s probability of stopping, 
as shown in Figure 6. As in the position-based model, trapezoidal 
membership functions were used to describe the input variables VP 
and vehicle speed (VS); these functions are described in Equations 4 
through 7.
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Again, data from 15 drivers were used to develop the model, which 
was then used to predict behavior for the remaining 15 drivers. 
The accuracy of this model (89%) was slightly better than that of the 

TABLE 2    Predictive Power of FL Models

Predicted
Correct 
(%)

Total 
(%)Model Observed Stop Go

Position-based Stop 145   11 93 88
Go   27 137 84

Speed and Stop 132   24 85 89
  position–based Go   12 152 93

TTSL-based Stop 149   7 96 90
Go   25 139 85

FIGURE 5    Position-based FL model surface.
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model based on position alone; however, the pattern of errors shifted 
so that 66% of the errors were associated with a vehicle observed 
stopping when it was predicted to go.

TTSL FL Model

The previous model was taken one step further by combining speed 
and position into a single variable, TTSL, prior to its use in an FL 
model. Trapezoidal functions (described in Equations 8 through 10) 
and a process similar to that described for the other models were used 
to develop this model. The probability-of-stopping surface, shown in 
Figure 7, looks similar to that obtained by plotting the raw data.
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This model provided the highest predictive power with regard to the 
behavior of the remaining 15 drivers. This model was slightly more 
accurate than the previous ones (90%), and the errors tended to be 
related to proceeding vehicles that were predicted to stop (78%).

Comparison of FL Models

The overall predictive power of all three models was very similar, 
ranging from 88% to 90% (Table 2). Although the results of the 
models were very similar, the observed differences can be attributed 
to slight variations in parameter selection during the model develop-
ment process. The data discussed earlier show that the introduction 
of speed as an additional measured variable did not significantly 
increase the accuracy of the predictive power of the model as might 
have been expected. Speeds were relatively consistent throughout the 
experiment, and there was little interference from other vehicles. This 
finding can be interpreted to suggest that under similar conditions, dis-
tance to the intersection alone provides much of the predictive power 
of the model. If greater variability in speed is present in the traffic 
stream (as a result of congestion or other factors), individual speeds 
may become more important in predicting driver behavior accurately.

The shift in the type of behavior that was most often predicted 
falsely bears consideration. Both the position-based and TTSL-based 

FIGURE 6    Speed and position–based FL model surface.
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models tended to predict that a vehicle would stop at the intersection 
when in fact it proceeded through the intersection. The speed and 
position–based model seemed to reverse that trend, predicting that 
a vehicle would proceed through the intersection when it stopped. 
This finding suggests that an increased sample size and refinement 
of the models may lead to increased accuracy.

Conclusions

Simulator Validation

Driving simulation has been recognized as a safe, efficient, and 
effective method of evaluating driver behavior under various con­
ditions. However, it is critically important to set the scope of research 
questions appropriately when a driving simulator is used, and the 
results obtained in laboratories of this type need to be extensively 
validated. Therefore, efforts should be made to compare results 
from simulator experiments with those obtained from alternative 
experimental mediums, such as surveys, test tracks, and field studies.

Driver decision making and vehicle deceleration rates are impor­
tant factors when one attempts to evaluate and model driver behavior 
in the DZ. Data collected as part of this research to describe these 
two factors were compared with data from several previous research 
studies on this topic that were conducted in different experimental 
mediums. The comparison provides evidence that driver response 
to traffic signals on tangent segments of roadway can be effectively 
evaluated and modeled in a driving simulator of a configuration 
similar to the one operated by the Oregon State University Driving 
and Bicycling Research Laboratory.

Model Development and Comparison

In the moment when drivers identify that the traffic signal has turned 
yellow, they must make rough estimates about their position, speed, 
and other factors to arrive at a decision to stop or proceed. When 

applied to this type of problem, FL essentially enables a computerized 
model to predict the outcome of the driver’s decision-making process.

The FL models proposed in this research demonstrated their abil­
ity to predict driver behavior with a reasonably high degree of accu­
racy (88% to 90%). Because of similar accuracy thresholds, vehicle 
speed did not appear to be as influential as expected for the scenario 
described in this research. As previously mentioned, it is suspected 
that such might not be the case when there is more variability in the 
speed of the traffic stream.

When the position-based FL model was applied to the data used 
by Hurwitz et al. (7, 18), the predicted behavior was exactly the 
same as that reported in the present study. Given that the previous 
work was founded on field observations, this finding strongly supports 
the validity of both the data collected in the driving simulator and 
the procedure used to develop the FL models.

Future Work

This research developed preliminary evidence to suggest the valid­
ity of driving simulators for accurately modeling driving response to 
traffic signals. Furthermore, it demonstrated the predictive power of 
using fuzzy logic to model driver behavior. Additional work in this 
area should include

•	 A larger, more diverse sample size;
•	 The consideration of other factors (e.g., varying speeds, proxi­

mally located vehicles) in the predictive models; and
•	 The application of the developed models to signal timing and 

detector design.
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