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SUMMARY

Traffic speed variance is defined as a measure of the dispersion of space mean speeds among drivers.
Empirical speed–density observations exhibit a structured traffic speed variance, which has been found to
be associated to the roadway crash rate, the fatality rate, and travel time variability. The objective of this
paper is to propose a generalized traffic speed variance function to describe this structured variance. The
proposed speed variance function is a response of the speed–density curve with two additional parameters.
The estimation of the model parameters in the proposed traffic speed variance function can be carried out
through an iterative nonlinear least-square algorithm (i.e., LevenbergMarquardt). A series of logistic
speed–density curve with varying parameters are used in the proposed traffic speed variance function with
different levels of performance. The proposed traffic speed variance model can potentially help to unveil the
underlying mechanism of empirical traffic phenomenon such as spontaneous congestion or capacity reduction.
Copyright © 2013 John Wiley & Sons, Ltd.

KEY WORDS: traffic speed variance model; speed–density relationship; virtual loop detector data

1. INTRODUCTION

Nonconstant variability appears in numerous fields of scientific inquiry such as chemical and bioassay
[1]; traffic flow is no exception. The wide-scattering effects (Figure 1(a)) in the equilibrium speed–
density relationship are well-understood and accepted by transportation researchers and professionals.
The mean curve of the wide-scattering equilibrium speed–density relationship (Referring to Figure 1(b))
has provoked sufficient modeling efforts using both deterministic and stochastic modeling techniques
[2, 3]. However, the traffic speed variance (or equivalently the speed variability), which has
been determined to be associated with roadway crash frequency, travel time, and its variability
on both highway and major arterial roads [4], has not been not sufficiently addressed in liter-
ature. Lave [5] noted in his paper “Speeding, Coordination, and the 55MPH Limit” that traffic
speed variance contributes to fatal rate, not speed. On the basis of his state cross-section data
analysis of 1981 and 1982, it was found that there is hardly any statistically discernible rela-
tionship between fatality rate and average speed, whereas there is a strong relationship with
traffic speed variance. Guo and Smith [6] used a linear stochastic univariate traffic speed series
to forecast short-term traffic speed variance; however, this research focused on short-term
forecasting instead of traffic speed variance models. Therefore, qualitative and quantitative
description of traffic speed variance is significant to both researchers and transportation profes-
sionals. With this information, the impact of traffic speed variation on traffic flow operation and
management can be better understood. Instead of exploring the potential applications of traffic
speed variances (such as road crash rate, travel time, and its variability estimation), this paper
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focuses on the mathematical modeling of traffic speed variances regarding the variance curve’s
nonlinearity and heteroscedasticity exhibited from the empirical traffic speed variances. The
impetus to model speed variation arose from the need to empirically account for observed
traffic dynamics such as wide-scattering plots of the empirical fundamental diagram, and the
onset of congestion as traffic density varies from low to high.

1.1. Objectives of research

The purpose of this paper is to provide a framework for modeling traffic speed variance. This
problem is an intricate one as traffic speed variability depends on diverse dynamic factors,
such as driver behavior heterogeneity and consistency, vehicle operating factors and types;
and static factors, including roadway characteristics such as horizontal and vertical curva-
tures, the posted speed limit and design speed. Accurate modeling of the speed variability
phenomenon has to take these numerous factors into consideration, which may require
substantial data preparation and computation to perform the analysis. To address these issues,
a method for modeling structured traffic speed variance exhibited in empirical traffic observa-
tions as an unsymmetrical parabolic shape curve has been developed. The proposed modeling
methodology is tailored for traffic speed variance on uninterrupted traffic flow facilities.
Therefore, this work contributes to the body of knowledge for advanced traffic operations
and management. The authors illustrate the suggested approach through a case study and
experimental results.

1.2. Outline of paper

The remainder of this paper is organized as follows. The background of traffic speed variance
implications is briefly reviewed in Section 2, and the research problem is defined in this
section using empirical observations. Section 3 of the paper provides a novel modeling of
the traffic speed variance with a focus on the nonlinearity and heterogeneity of the empiri-
cally observed traffic speed variance. In this context, a generalized traffic speed variance
function is proposed in Section 3.2 in which the speed variance is a response of the speed–
density curve with two additional parameters based on the smoothed shape of the speed
variance curve (ignoring the local spikes). The choice of the speed–density curves is provided
in Section 3.3 in which a series of speed–density curves with varying model parameters are
presented. In Section 4.1, the estimation of model parameters of the traffic speed variance
function and the speed–density function are provided. In Section 5, we briefly summarize
our findings.

(a) Scattered Plot (b) Mean and Variance

Figure 1. The scattered plot of an empirical speed–density relationship and its mean, variance curves.
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2. PROBLEM FORMULATION

2.1. Background

The knowledge of traffic speed variance (or variation of traffic speeds) has prevalent applications in
numerous areas, for example, speed estimation using single/double-loop detector data [7,8], reduction
of crash rates on roadways [9,10], and the design of roadway characteristics [11]. Previous research
efforts approached this problem from the following directions: (1) From a policy and safety perspective,
speed variance and speed variance reduction are serious considerations for the setting of different speed
limits for passenger cars, and heavy trucks [12], and highway work zone safety control [13]. Recently,
Lu and Chen [14] analyzed the impacts of speed dispersion influence on traffic safety using empirical
data from China and the Netherlands. Similiar to Lu and Chen’s study [14], Vadeby and Forsman
[15] studied the state of knowledge regarding speed distribution and traffic safety. To be more specific,
how changes in real speed distribution will impact the accident risk using three different traffic safety
measures. Aarts and Schagen [16] identified quantitative relationships between individual driving speed
and the risk of road crash rates; the authors concluded that larger speed differentials between vehicles are
related to higher crash rates. Additionally, Graves et al. [[17]] proposed a model of the optimal speed
limit that explicitly recognized the roles of average speed, speed variance, and the enforcement level.
(2) From a traffic operation and management standpoint, Saifallah [18] showed that the density of
maximum throughput is near the density of maximum speed variance, which agrees with the
observation that maximum speed variance occurs at the critical density where capacity is usually
obtained. Collins et al. [[19]] conducted research about traffic speed variability on rural two-lane
highways and the relationship between the increase of speed variance and the increase of crash
potential. Research efforts about traffic speed variances on multilane highways were performed to quan-
tify the influence of specific access design factors on speed variance using statistical techniques for
improving safety performance [20]. Recently, Rakha [21] proposed a relationship between time mean
speed and space mean speed variances, as well as space mean speed and travel time variance. This
review of what has been carried out is not intended to be complete but to emphasize that a better
understanding of traffic speed variance and its contributing factors is extremely important to the
transportation profession. A variety of contributing factors (i.e., driver’s lane changing behavior,
number of lanes, driver/vehicle heterogeneity [4]) affect traffic speed variance, but the most significant
factor was identified by Garber as the difference between the design speed and the posted speed
limit [22]. From a safety perspective, traffic speed variance directly relates to crash frequency and could
help contribute to the identification of crash-prone locations on highways and arterials [4,22,23,19].

2.2. Notation

The following notation is utilized to formulate the problem.

Parameter Description
σ2
i traffic speed variance

s2i the empirical variance
i index of traffic density
j index of jam density
k traffic density
kj jam density
kc critical traffic density
kt transition density
V(k) traffic speed as a function of density k
V(k,θ) traffic speed as a function of traffic density k and a set of parameters θ
ε a random error, which is the discrepancy between the empirical traffic speed and the

model speed
τ a parameter in the generalized traffic speed variance function
δ2 a parameter in the generalized traffic speed variance function, the physical meaning of this

parameter is the traffic speed variance when traffic is at free-flow condition
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vf free-flow speed
vb the finite traffic speed at stop-and-go conditions
vd road design speed
θ1 a scale parameter that describes how the curve is stretched out over the whole

density range
θ2 a parameter that controls the lopsidedness of the curve
5PL the five-parameter logistic speed–density model
4PL the four-parameter logistic speed–density model
3PL the three-parameter logistic speed–density model

2.3. Problem definition

The problem can be viewed as finding a mathematical function to describe change in traffic
speed variance as traffic density varies. The authors start with the empirical traffic speed
variances observations collected from Georgia State Route 400 as can be seen from Figure 2
(which were collected by virtual loop detectors on freeway GA400). From the structured
empirical traffic speed variances (Figures 3 and 4), one can see that the variance of traffic
speed is quite comparable with the mean speed in a wide range [24]. Apparently, an ignorable
existence of a structured variance has been verified from the empirical traffic observations.
One key question is how can we represent this variance curve mathematically. Before that,
the authors first start the formulation of traffic speed variance function with its nonlinearity
and heterogeneity.
It is shown that in the paper, the structure of the empirical traffic speed variance is different from

weekdays to weekends. Because of the decrease of the number of vehicles on Saturday and Sundays
on GA400, the traffic flow on both directions of GA400 is free flow most of the time. Therefore,
the structure of empirical traffic speed variance over the weekends only contains the free-flow phase
but not the congested phase because there is hardly any congestion during weekends on this highway.
The magnitude of the traffic speed variance varies larger during weekends than weekdays; that is, the

Figure 2. Study site: GA400 southbound and northbound with 100 stations.
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spikes of the maximum speed variance are typically two or three times the free-flow speed, which is
significantly larger than the normal weekdays. The model can be used to identify a density value for
flow breakdown of the critical density 40 vehs/km during weekdays or weekends.

3. THE MODELING OF TRAFFIC SPEED VARIANCE

3.1. The nonlinearity and heterogeneity of speed variance

Nonconstant variability is prevalent in numerous of scientific fields. In general, there are two cases in
the difference of variances [1]: (1) the variance σi�σi+ 1 is small, and (2) the variance σi�σi+ 1 is
large. If the speed variance σi�σi+ 1 is small, we can be confident in the approximation of the
variances with homogeneity by assuming Var(εij) =σ2 [1]. In the case of a large σi�σi+ 1, the physical

(a) Monday (b) Tuesday

(c) Wednesday (d) Thursday

(e) Friday

Figure 3. Weekday change of traffic speed variance from 1-year observations at station 4000026 with time
aggregation level 5minutes. The units on the y-axis is km/hour and vehs/km on the x-axis, the same on the

following figures.
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interpretation is that various driver groups behave differently under changing traffic densities. The em-
pirical evidence is against the assumption of homogeneous variances. In this case, the real
heterogeneous variation of σ2 is approximated by a function f called the variance function such that
Var(εij) = v(ki,δ2,θ,τ). In most situations, f is assumed to depend on v(k,θ). For example, v(ki,δ2,θ,τ) =
σ2v(ki,θ)τ, where τ is a set of parameters that have to be estimated or assumed to be known already.
Modelers usually can simplify the necessary assumptions by assuming that the vector θp varies in
the interior of an interval. The function v(ki,θ) is assumed to be twice continuously differentiable with
respect to the parameters θ [1,2].
To model the nonlinearity and heterogeneity, the authors considered the errors in the model, which

can be described by

ε ¼ V kð Þ � v k; θð Þ (1)

(a) Monday (b) Tuesday

(c) Wednesday (d) Thursday

(e) Friday

Figure 4. Weekday change of traffic speed variance from 1-year observations at station 4001118 with time
aggregation level 5minutes.
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in which V(k) is the empirical traffic speed and v(k,θ) is the speed value given by a speed–density
model. For each value of density k, the model can be rewritten as

Vil kð Þ ¼ v ki; θð Þ þ εil (2)

with l varying from 1 to ni (ni is the number of speed observations over a long period under density ki)
and i from 1 to j (kj is jam density). For each value of i, the empirical variance of speed can be
calculated by

s2i ¼
1
ni
∑
ni

l¼1
Vil � Vi�ð Þ2 (3)

with Vi� ¼ 1
ni
∑ni

l¼1Vij. From the empirical data, the variance of traffic speeds is heterogeneous, so we

assume that Var εilð Þ ¼ σ2
i . The model is given by the following

Vil kð Þ ¼ v ki; θð Þ þ σ2
i (4)

with Var εilð Þ ¼ σ2
i and E(εil) = 0, where l= 1,…, ni; i= 1,…, j; and total number of observations equal

n ¼ ∑j
i¼1ni. v(ki,θ) is given by equations in Section 3.3. εil are independent Gaussian random variables.

By construction, ε is a random error that is equal to the discrepancy between empirical traffic speed and
the model speed v(ki,θ). θ is a vector of p parameters θ1, θ2,…, θp.

3.2. Parametric modeling of the variance

A variance function needs to be determined to estimate the heterogeneous traffic speed variance. To
make the choice of variance function, some qualitative or quantitative indications of empirical traffic
speed variance are needed [1]. Figures 3–5 plot the empirical mean of speed–density observations over
1 year and its corresponding speed variance on both weekdays and weekends. From the figures, the
authors observe that the variance of the empirical observations first grows as traffic density increases and
then decreases with the maximum achieved at an intermediate density around kc(35→ 45) (veh/km)
typically called the critical density. The exhibited empirical traffic speed variance can be depicted by
a parabola that is smaller at the two ends: free flow and congested. The authors also notice that the
general shape of the empirical traffic speed variance is similar to each other from Monday to Friday
(weekdays); however, the empirical variance shape is different on Saturday and Sunday from weekdays.
This difference can be explained by the traffic pattern change from weekdays to weekends. During
weekends, the number of commuters drop significantly so that the vehicles travel at higher speeds on
GA400. The proposed traffic speed variance functions in this research can be applied to both weekdays
and weekends, but obviously, the traffic speed variance curve on weekends only shows the free-flow
conditions.
For an increasing variance, there are essentially two scenarios [1]. The first scenario is that the

variance varies as a power of the response

σ2
i ¼ δ2ϕ ki; θ; τð Þ ¼ δ2v ki; θð Þτ (5)

The other one is that the variance varies as a linear function of the response

σ2
i ¼ δ2ϕ ki; θ; τð Þ ¼ δ2 1þ τv ki; θð Þð Þ (6)

Judging from the empirical observations of traffic speed variance in the previous section, we found
that these two variance functions are not appropriate to model a parabola-shaped variance function.
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For a variance function varying like a parabola, the most generalized model is given by

σ2
i ¼ δ2 þ δ2τ1 vmax þ τ2 � v ki; θð Þð Þ v ki; θð Þ � vminð Þ (7)

in which vmax is the maximum value and vmin is the smallest value of v(ki,θ). For the empirical traffic
speed variance, the variance function that we adopt is given by

σ2
i ¼ δ2 1:0þ τv ki; θð Þ vf � v ki; θð Þ� �� �

(8)

in which δ and τ are parameters; v(k,θ) adopts the deterministic five-parameter logistic speed–density
models, but it opens the existing single-regime speed–density models listed in [2]. A slight change to
this model can be made by replacing the free-flow speed term vf with a highway design speed; that is, a
higher vf, here called vd, will yield the following model:

σ2
i ¼ δ2 1:0þ τv ki; θð Þ vd � v ki; θð Þð Þð Þ (9)

The speed–density relationship embedded in the variance function is open to the existing speed–
density models, for example, a Greenshield model. If a Greenshield speed–density model is utilized
in the generalized traffic speed variance function with additional parameters, a specific traffic speed
variance function based on it will be in the form of

(a) Saturday/4001118 (b) Sunday/4001118

(c) Saturday/4000026 (d) Sunday/4000026

Figure 5. Weekend change of traffic speed variance from 1-year observations with time aggregation
level 5minutes.
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σ2
i ¼ δ2 1:0þ τvf 1� ki=kj

� �
vd � vf � vf ki=kj

� �� �� �
(10)

A plot of the traffic variance corresponding to the Greenshield model can be seen from Figure 6. A
linear speed–density model leads to a parabolic traffic speed variance function, but we observe that the
variance function based on the Greenshield model differs from the empirical traffic speed variance in
terms of the magnitude and symmetry.
The motivation of using Greenshield model to test the proposed traffic speed variance function is

twofold. Firstly, Greenshield model is a classic speed–density model that is a simple linear function
with only two parameters. Second, the Greenshield model is easy to understand and apply in different
scenarios. The major purpose of this paper is to show the newly proposed logistic speed–density
models and its corresponding traffic speed variance models; therefore, the authors decided not to
compare the newly developed model against other existing nonlinear models such as the Greenberg
model and the Underwood model to divert the focus. There are varying parameters used in different
nonlinear speed–density models, which made the comparison to be a challenging task. This is because
it is not convincing to make conclusive remarks to compare models with totally different model
parameters. However, this paper will compare the three newly proposed logistic speed–density models
with similar sets of parameters.

3.3. Choice of speed–density curves and corresponding variance functions

The empirical speed–density observations exhibit a reversed “S” shape, which makes logistic modeling
a natural candidate [1,2]. The authors extended the series of logistic speed–density models to the
generalized variance function to obtain a series of traffic speed variance function based on the five-
parameter (5PL), four-parameter (4PL), and three-parameter (3PL) logistic speed–density models
developed in [2]. The performance of the family of logistic speed–density model to the empirical data
can be viewed from Figure 7.
The authors found that the logistic speed–density function describes the empirical data [2]. Equation

11 is the most general five-parameter logistic speed–density model (5PL) in sigmoidal shape. In which,
vf and vb are the upper and lower asymptotes, respectively. Specific to our case, vf represents free-flow
speed. vb is the average travel speed under stop-and-go conditions. This parameter assumes that traffic
has finite movements even in congested situations [25]. θ1 is a scale parameter that describes how the
curve is stretched out over the whole density range, and θ2 is a parameter that controls the lopsidedness
of the curve. The parameter kt is the turning point at which the speed–density curve makes the
transition from free flow to congested flow. Therefore, a sigmoidal shape five-parameter logistic
speed–density model and the corresponding traffic speed variance function take a functional form of

Figure 6. The variance function based on a Greenshield model.
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v k; θð Þ ¼ vb þ vf � vb

1þ exp k � kt
θ1

� �� �θ2

σ2
i ¼ δ2 1:0þ τv k; θð Þ vf � v k; θð Þ� �� �

8>><
>>:

(11)

The performance of the traffic variance function based on a five-parameter logistic speed–density model
under varying parameters of δ2 and τ is demonstrated in Figure 8. A four-parameter logistic speed–density
model (4PL) is obtained by reducing the parameter θ2, and its corresponding variance function is given by

v k; θð Þ ¼ vb þ vf � vb

1þ exp k � kc
θ1

� �

σ2
i ¼ δ2 1:0þ τv k; θð Þ vf � v k; θð Þ� �� �

8><
>:

(12)

(a) 5PL (b) 5PL

(c) 4PL (d) 4PL

(e) 3PL (f) 3PL

Figure 7. Performance of five-parameter (top), four-parameter (middle), and three-parameter (bottom) logistic
speed–density model fitting to the same set of empirical data.
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The performance of a four-parameter logistic speed–density model can be viewed from Figure 9
when the magnitude of the parameters is varied. The traffic variance function based on this four-
parameter logistic speed–density model is plotted in Figure 9(e) and (f) when the four parameters
are fixed, whereas the two additional parameters in the variance function is varied.
The physical meaning of the other parameters remains unchanged. Different from the 5PL, the 4PL

captures the critical traffic density kc instead of kt. The three-parameter logistic speed–density model
(3PL) can be obtained by removing the user-specified average travel speed vb at stop-and-go traffic
conditions, and the variance function based on this 3PL curve is given by

v k; θð Þ ¼ vf

1þ exp k � kc
θ1

� �

σ2
i ¼ δ2 1:0þ τv k; θð Þ vf � v k; θð Þ� �� �

8><
>:

(13)

The effects of varying the three parameters vf, vb, and θ1 of the three-parameter logistic speed–
density model can be viewed from Figure 10(a)–(c). The performance of the corresponding variance
function based the 3PL model is demonstrated in Figure 10(d) and (e).

4. EXPERIMENTAL RESULTS

4.1. Estimation of model parameters

As aforementioned, the modeling of traffic speed variance is dependent on the speed–density relationship.
Figures 11 and 12 show the performance of the proposed variance functions with 3PL, 4PL, and 5PL
logistic speed–density models when compared with empirical mean and speed variance. It is evident
that the selection of parameters in the speed–density model and the traffic speed variance function is
critical to the performance when fitting the models to empirical data. Thus, the identification of the
optimal parameters in the series of models is essential to reduce the residuals between the model
estimation and the empirical data. In this paper, the estimation of the model parameters such as vf, vb, kt,
kc, θ1, θ2, τ, and δ2 was performed through a least-square algorithm [26], which has been implemented in
Scipy.Optimize [27]. The estimation of traffic speed variance from empirical data can be carried out
through obtaining the parameters from the speed data observation point. The parameters are typically
location-based, but they will vary in a certain range that can be obtained from empirical observations.
The two parameters in the traffic speed variance functions are more difficult to obtain than the
parameters in the speed–density curve because most of the parameters in the speed–density curve has
physical meaning, whereas the physical meaning of the two parameters in the traffic speed variance
function is unclear. Luckily, the range of two parameters in the traffic speed variance function can be
specified; for simpler applications, the two parameters can be assumed constant, but in reality, the
two parameters are also location based.

Figure 8. The performance of the traffic variance function based on a five-parameter logistic speed–density model
under varying parameters of δ2 and τ.
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Table 1 listed the optimal model parameters for the proposed variance functions in Section 3.3,
which are dependent on the series of logistic speed–density models [2]. Column S of Table 1 repre-
sents the station ID (i.e., detector stations). The model parameters in the speed–density model are
obtained through an iterative least-squares procedure, whereas the two additional parameters in the
variance function are obtained by a maximum likelihood estimation method because we assume that
the error term εi is a Gaussian variable. For more details about the statistical estimation techniques, in-
terested readers are referred to [1]. From the magnitude of the estimated parameters particularly δ2 and
τ, the authors observe that δ2 is relatively stable, whereas τ suffers a large variation. The existence of a
constant term in the variance model, in this case δ2, can be explained in both practical and theoretical
ways. The physical meaning of δ2 is the maximum possible variance when traffic density is nearly
0 (corresponds to free-flow condition). This implies the fact that drivers from different driver groups

(a) (b)

(c) (d)

(f)(e)

Figure 9. Effects of varying parameters vf, vb, kc, and θ1 on the four-parameter logistic speed–density model and its
corresponding variance functions with varying parameters of τ and δ2.
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(aggressive or intimidate, old or young) have their own preferred free-flow speed, and this location-
specific parameter is dependent on empirical data. To frame it in a more theoretical sense, the existence
of this parameter can be verified by a likelihood ration test by expressing the hypothesis as {δ2 = 0};
the results signify a better fit when {δ2≠ 0} [1].

4.2. Analysis of results

In this section of the paper, the authors selected four data sets collected from detectors 4001119,
4001120, 4001122, and 4001123, respectively. Technically, all the 78 observations from the basic
segments of GA400 in Figure 2 can be used in the experiments by varying the parameters in the
speed–density relationship and the corresponding variance functions based on it. The optimal parameters

(a) (b)

(d)(c)

(e)

Figure 10. Effects of varying parameters vf, kc, θ1 on the three-parameter logistic speed–density (3PL) model and
the corresponding variance function based on 3PL model with varying parameters: δ2 and τ.
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in the speed–density curve and its corresponding variance function can be estimated by a least-square
iterative procedure (this paper used the leastsq in scipy.optimize [27]). To evaluate the performance
of the proposed traffic speed variance models, the authors will compare the 3PL, 4PL, and 5PL
speed–density models to the empirical mean of a speed–density observation; simultaneously, the au-
thors also compare the traffic speed variance functions based on the 3PL, 4PL, and 5PL models to
the empirical traffic speed variances as can be seen from the left half in Figures 11 and 12. The EM rep-
resents the empirical mean of the scattered speed–density observation, whereas EV is the empirical traf-
fic speed variance at this location. Similarly, the nPL (n = 3, 4, 5) represents the mean curve estimated
from the n-parameter logistic speed–density models. On the right-hand side of Figures 11 and 12, the
MR indicates the mean residual, which is the difference between the empirical mean and the mean

Figure 11. Performance of the three-parameter, four-parameter, and five-parameter logistic speed–density models
against the empirical mean and residuals between their corresponding variance models and empirical variance at

station 4001119 and 4001120.
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estimated from the n-parameter logistic speed–density model; the VR is essentially the variance resid-
uals, which is the difference between the empirical variance and the variance values estimated from the
corresponding traffic speed variance functions proposed in Section 3.3. It is obvious from the results
shown in Figures 11 and 12 that the 5PL model and its corresponding variance function performs better
than other two models in terms of both residuals from the mean and variance. The performance of the lo-
gistic speed–density models fitting to the empirical mean has been provided in [2]. Therefore, the authors
will focus on the comparison of the proposed traffic speed variance functions to the empirical traffic speed
variance. Readers may have noticed that the empirical traffic speed variance we are comparing against
with is different from the structured empirical traffic speed variance, which shows many kinks as can

Figure 12. Performance of the three-parameter, four-parameter, and five-parameter logistic speed–density models
against the empirical mean and residuals between their corresponding variance models and empirical variance at

station 4001122 and 4001123.
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be seen from Figures 3–5. The proposed traffic speed variance function can be potentially applied to
model travel time variability and relationship between speed variance and accident rates. The exploration
of these applications of the proposed traffic speed variance models is actively pursued by the authors.

5. SUMMARY AND CONCLUSIONS

The primary motivation for this research originated from an empirical need to account for the traffic
speed variances for the heterogeneous traffic flow systems. The second motivation stems from the fact
that transportation professionals in general have a better understanding of the equilibrium speed–
density relationship, but a limited knowledge of how traffic speed variance varies as traffic density
increases from 0 to jam density because there is evidence that speed variance is somehow associated
with road crash rates and so on. The authors have proposed a generalized variance function to model
the structured empirical traffic speed variance. The variance function captures the nonlinear and
heterogeneous nature of a parabola-shaped empirical variance. The proposed variance function has
two features: it is dependent on the speed–density curve, and it contains two additional parameters that
have to be set either as constants for simplification or to be estimated from empirical data.

Table I. Estimated parameters for the variance function and the five-parameter logistic speed–density model
(speed vf in km/hour, density kt in veh/km).

S δ2 τ vf kt θ1 θ2 S δ2 τ vf kt θ1 θ2

01 1.2 0.0014 107.44 17.53 1.8768 0.0871 25 1.2 0.005 96.09 20.04 3.6202 0.1323
02 1.2 0.004 99.92 16.12 2.1098 0.0947 26 1.3 0.003 99.93 20.34 3.0470 0.1269
03 1.4 0.010 106.89 14.40 1.7388 0.0714 27 1.3 0.04 96.14 22.89 4.5292 0.1941
04 2.4 0.008 47.52 32.61 0.1188 0.1835 28 1.3 0.006 99.88 14.30 0.2418 0.0106
05 1.3 0.004 86.57 24.39 1.0094 0.0401 29 1.1 0.003 106.80 16.95 2.4325 0.1059
06 1.6 0.003 92.71 21.72 3.9212 0.1835 30 1.6 0.005 91.04 22.21 3.2091 0.1138
07 1.4 0.002 99.39 21.26 3.8762 0.1928 31 1.8 0.002 88.99 28.77 5.1484 0.1499
08 1.5 0.013 95.06 20.33 3.15 0.1628 32 1.3 0.003 97.05 19.61 2.2104 0.0746
09 1.1 0.002 111.06 17.01 2.5501 0.1074 33 1.4 0.002 95.69 22.43 3.0685 0.1249
10 1.3 0.012 96.16 19.03 2.0220 0.0938 34 1.3 0.007 98.05 22.24 4.4141 0.1688
11 1.3 0.009 97.64 17.52 2.2787 0.0899 35 1.1 0.005 107.96 21.24 4.1009 0.1736
12 1.2 0.008 100.67 12.63 2.0386 0.0899 36 1.4 0.009 101.92 21.67 3.7766 0.1478
13 1.3 0.006 103.02 15.52 2.0674 0.0857 37 1.3 0.008 98.47 21.07 3.7207 0.1326
14 1.3 0.010 98.97 20.20 3.1219 0.1179 38 1.2 0.005 106.31 19.42 4.6129 0.1802
15 1.3 0.009 98.60 17.69 3.0240 0.1202 39 1.1 0.006 110.36 17.44 3.8358 0.2096
16 1.2 0.004 105.51 16.48 3.3903 0.1404 40 1.2 0.008 108.57 16.86 2.6591 0.1181
17 1.3 0.006 99.35 13.25 1.8755 0.0926 41 1.3 0.004 105.64 19.89 3.3156 0.1181
18 1.3 0.004 102.12 18.99 3.34 0.1231 42 1.3 0.008 105.40 18.67 3.8394 0.1387
19 1.4 0.007 98.08 19.97 3.53 0.1300 43 1.0 0.009 109.58 18.19 2.7535 0.1140
20 1.2 0.005 104.22 18.06 3.3054 0.1110 44 1.4 0.015 99.68 19.64 2.7885 0.0995
21 1.4 0.008 100.06 19.22 3.3051 0.1189 45 1.3 0.009 101.67 18.83 2.7745 0.0985
22 1.3 0.007 100.06 19.22 3.3051 0.1189 46 1.1 0.005 108.45 17.83 2.6356 0.1199
23 1.3 0.010 97.45 20.98 4.9820 0.1901 47 1.2 0.008 108.24 15.25 2.4505 0.1259
24 1.1 0.003 114.36 17.55 4.7015 0.1901 48 1.3 0.006 101.68 21.37 4.5757 0.1254
25 1.5 0.013 89.34 17.42 5.3515 0.2271 49 1.4 0.014 96.72 17.79 5.2587 0.1696
26 1.2 0.010 110.55 12.29 2.0450 0.0714 50 1.7 0.016 87.05 21.47 3.5007 0.1060
27 1.4 0.012 99.11 22.67 5.3573 0.1994 51 1.5 0.008 95.37 16.70 2.4823 0.1341
28 1.4 0.009 98.08 28.67 6.61 0.4005 52 1.3 0.012 102.50 15.05 1.7244 0.0810
29 1.3 0.008 104.20 22.27 4.82 0.1787 53 1.3 0.008 99.22 17.10 1.7835 0.0716
30 1.3 0.008 105.09 24.04 5.5045 0.2693 54 1.5 0.012 89.83 17.75 1.8373 0.0623
31 1.5 0.007 97.72 23.90 5.1731 0.2009 55 0.9 0.005 137.75 15.72 1.2974 0.0512
32 1.6 0.012 95.57 22.53 4.4708 0.1535 56 1.3 0.006 97.12 15.72 1.2974 0.0512
33 1.9 0.015 72.32 21.28 1.2734 0.0341 57 1.6 0.008 87.67 16.91 1.2206 0.0512
34 1.5 0.018 92.66 21.17 5.0568 0.1681 58 1.4 0.009 94.76 16.73 1.8321 0.0618
35 1.2 0.016 103.94 11.24 2.7827 0.0653 59 1.2 0.014 102.27 13.37 1.5524 0.0650
36 1.8 0.008 88.81 19.97 3.8557 0.1687 60 1.4 0.010 91.08 19.45 2.0860 0.0592
37 1.4 0.013 101.40 14.28 3.7376 0.1380 61 1.3 0.012 91.40 20.18 2.6633 0.0911
38 1.3 0.009 99.64 18.22 3.67 0.1413 62 1.3 0.008 94.35 15.14 1.8434 0.0604
39 1.4 0.011 102.99 17.87 3.45 0.1410 63 1.2 0.006 108.43 13.53 1.1753 0.0450
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The major findings of this research are as follows:

(1) The structured traffic speed variance is the results of naturally occurring macroscopic traffic
conditions. The empirical variance takes a parabolic shape that first increases to a local maximum
and then decreases as traffic density increases.

(2) The pattern of structured traffic speed variance is different between weekdays and weekends. It is
found that this pattern is consistent on either weekdays (from Monday to Friday) or weekends
(Saturday and Sunday), but this proposed speed variance model works better for weekdays than
weekends data.

(3) A parametric traffic speed variance function is used to model traffic speed variance in terms of its
nonlinearity and heterogeneity. The model parameters are calibrated through empirical data.

(4) The proposed variance function matches the empirically observed traffic speed variances. In
particular, the five-parameter logistic speed–density model and its corresponding speed variance
function describe the empirical variance better than the three-parameter and four-parameter
logistic speed–density models and their corresponding variance functions.

For future directions, the authors will address some of the limitations of the proposed traffic speed
variance modeling framework, for example, removing the dependency on the speed–density relationship
and reducing the number of model parameters in the variance function. One feature of the proposed
variance functions is its continuity over the whole range of traffic density. Multiregime traffic speed
variance functions or turning point models could be explored and compared with single-regime models.
Obviously, a multiregime traffic speed variance model sacrifices the mathematical elegance (i.e., differen-
tiability) for limited improvements on empirical accuracy. With the developed logistic speed–density
models and their corresponding traffic speed variance functions, it is likely to develop a stochastic logistic
speed–density model that incorporates both mean and variance into considerations.
As a logical next step, the authors will explore various potential applications of the proposed traffic

speed variance models. One potential application is to establish the connection between traffic speed
variance and the crash rates from the empirical data. However, the challenge for this research is the
unavailability of the proper dataset. Another potential application is to use the proposed traffic speed
variance model to evaluate travel time reliability either on a corridor or in a network.
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