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Abstract: This paper presents a vehicle-type-specific headway distribution analysis in a freeway work zone. The goal of this paper is to
provide a vehicle-type-specific model with different time periods using empirical work-zone data from highway I-91 in Greenfield, MA. A
nonparametric approach with a Gaussian kernel is used to describe the vehicle-type-specific headway distribution in a freeway work zone. No
assumption is required on how the headways should be distributed for nonparametric methods. The vehicles are classified into Car, Van, and
Truck based on a FHWA vehicle-type classification scheme. Statistical tests indicate nonparametric distribution with Gaussian kernel out-
performs the lognormal distribution in statistical sense according to the χ2 values. Further, another work zone dataset from Jacksonville, FL is
utilized to examine the mixed headway scenario without specifying vehicle types. The K − S and Chi-square test results suggest the necessity
of considering the vehicle types separately. Following the results, a discussion regarding why nonparametric model is better and the future
research directions are presented. DOI: 10.1061/(ASCE)TE.1943-5436.0000788. © 2015 American Society of Civil Engineers.
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Introduction

Background

Vehicle time headway, defined as the elapsed time in seconds be-
tween the arrival of the leading and following vehicle at an obser-
vation point, is a measure of space between two successive vehicles
as can be seen from Fig. 1.

The modelling of vehicle time headway distribution is essential
to many aspects of fundamental traffic flow analysis, for example,
capacity estimation, microscopic simulation, and safety analysis
(i.e., time-to-collision) (Pueboobpaphan et al. 2013).

For traffic simulation models, a key component of determining
the simulation model performance is vehicle interarrival times.
Researchers, therefore, devote considerable efforts to headway
distribution models (Jang et al. 2011). Since time headway can be
considered as the reciprocal of flow rate (Zhang et al. 2007), under
certain circumstances, vehicle time headway can be used to esti-
mate the road capacity. An accurate headway distribution would
help engineers to maximize road capacity and minimize vehicle
delays (Zhang et al. 2007). Additionally, as headway is related

to vehicle merging and lane-changing behavior, it is essential
for estimating road capacity or signal timing parameters at signal-
ized intersections. Furthermore, vehicle interarrival times are also
related to traffic safety, driver behavior, and traffic flow theory
(Chen et al. 2010). Hence, an inspection of headway distributions
is essential and important.

A spectrum of studies have been conducted on vehicle headway
distribution models. Recently, Dey and Chandra (2009) proposed
gamma and lognormal distribution for desired time gap and time
headway in a steady car-following state on two-lane roads under
mixed traffic conditions. It was observed that a two-wheeler’s de-
sired time gap is the minimum of all other categories of vehicles,
while the desired time gap for tractors is the maximum of all ve-
hicles. Zhang and Wang (2013) proposed a nonparametric model
with a Gaussian kernel model investigating a freeway scenario but
without specifying vehicle types. The results showed the superior-
ity of nonparametric models over parametric families. Ai et al.
(2010) retrieved reliable vehicle trajectory data from observation-
based video data. Through an examination, it showed significant
differences in vehicle-type-specific headways under average traffic
conditions, uncongested flow, and congested flow. Simultaneously,
Weng et al. (2013) conducted a vehicle-type-specific headway
distribution in work zones using empirical data from Singapore
through a parametric approach. The results showed a decent
approximation of the parametric model for every vehicle type.
Jiang et al. (2011) classified vehicles into two categories: Car
and heavy goods vehicles (HGV). The results indicated the average
time headways of HGV–Car and HGV–HGV patterns were about
0.5 s more than that of Car–Car and Car–HGV. However, para-
metric methods share a common flaw: the empirical data follow
behavioral assumptions. That is, the use of assumptions introduces
uncertainty in the modeling technique, which make it difficult to
judge which is the true model for headway distribution. There-
fore, parametric methods are often established on behavioral as-
sumptions while the nonparametric model is flexible without
dependending on prior assumptions. This has been verified by the
recent study of Zhang and Wang (2013). Further, nonparametric
models can extract the statistical features inherent in the empirical
data. Considering these points, this paper proposes a study on
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vehicle headway distribution using a nonparametric method in
freeway work zones. In addition, a vehicle-type-specific headway
distribution analysis is conducted in a freeway work zone, which is
different from the approach of Zhang and Wang (2013).

Objective of the Paper

The purpose of this paper is to present a vehicle-type-specific head-
way distribution model through a nonparametric approach for a
freeway work-zone scenario. This problem is challenging because
the availability of large work-zone vehicle-type-specific traffic flow
data is limited. A nonparametric Gaussian kernel model is used to
evaluate the vehicle-type-specific headway distribution. Then, the
nonparametric model is compared against parametric models such
as a lognormal distribution. The suggested approach is illustrated
with case studies and experimental results.

Paper Organization

The remainder of this paper is organized as follows. A thorough
review is presented in literature review section. Theory and meth-
odology are introduced in “Methodology” section. “Experimental
Section” describes study area, data and experimental design. Then
the statistical tests methodology are provided in “Statistical Analy-
sis: Probability Metric” section, and the descriptive statistics are
exhibited in “Descriptive Statistical Analysis” section. In “Results
Analysis,” the goodness-of-t test and visual performance of the re-
sults are presented. At last, “Summary, Conclusion, and Future
Work” concluded the paper with future remarks.

Literature Review

Many headway distribution models have been derived and cali-
brated using empirical traffic data. In general, these models can
be categorized into two groups: single statistical distribution mod-
els and mixed models (Zhang et al. 2007). The authors summarized
the existing relevant headway distribution studies in Fig. 2.

Single Distribution Models

Representatives of the single statistical distribution family include
normal distribution, log-normal distribution (Greenberg 1966),
Weibull distribution (Sun and Benekohal 2005), the Erlang distri-
bution (Al-Ghamdi 2001; Zhang and Wang 2013), exponential dis-
tribution, log-logistic distribution, inverse Gaussian distribution,
and Gamma distribution (Al-Ghamdi 2001; Yin et al. 2009). For
instance, Sun and Benekohal (2005) used a Weibull distribution
model to describe the vehicle headways in work zones. Jang et al.
(2011) examined a Johnson SU distribution together with a
Johnson SB distribution (Johnson 1949). A lognormal distribution
is transformation of a normal distribution, which can be employed
to describe naturally occurring unimodal sets of data. Jin et al.
(2009) studied departure headways and indicated that the head-
way distribution in a queue resembles a lognormal distribution.

Al-Ghamdi (2001) recommended four headway distribution mod-
els at different flow rates, such as a negative exponential distribu-
tion for low flow rates; shifted exponential and gamma distributions
for the middle flow rate; and an Erlang distribution for high flow
rates. Riccardo and Massimiliano (2012) analyzed a few case
studies on rural two-lane two-way roads and suggested that the in-
verse Weibull distribution fits the empirical headway data better.
Yin et al. (2009) studied the dependence of headway distribution
on traffic status and showed that the lognormal distribution is ad-
equate to fit headway when traffic is in a free-flow state, and the
log-logistical distribution is suitable in congested state.

Mixed Distribution Models

Many of the single distributions can fit empirical headway in free-
flow condition but not congested flow. The poor predictive capabil-
ity makes their performance unsatisfying. Mixed headway distribu-
tion models, therefore, were pursued to better capture headway
dynamics. Examples of mixed models used to predict headway
distributions include double displaced negative exponential dis-
tribution (DDNED) (Griffiths and Hunt 1991), combined normal
distribution and shifted negative exponential distribution (Ye and
Zhang 2009), combined negative exponential distribution and
shifted negative exponential distribution (Ye and Zhang 2009), gen-
eralized queuing model (GQM) (Zhang et al. 2007) and semi-
poisson distribution etc. For instance, Zhang et al. (2007) found
that double displaced negative exponential distribution (DDNED)
and lognormal distribution better described high-occupancy vehicle
(HOV) lanes and regular lanes. In a vehicle-type-specific and
car-dominant case, Ye and Zhang (2009) proved that combined
negative exponential distribution and shifted negative exponential
distribution is better than combining a combined normal distribu-
tion and shifted negative exponential distribution (a mixed distri-
bution) in describing empirical headway. Some mixed distributions
were developed based on the assumption that a headwayH consists
of two components,H ¼ T þ U, where T is the tracking or follow-
ing component and U is the free component (Zhang et al. 2007).
According to this construct, many important models have been de-
rived such as the Cowan M1–M4 (Cowan 1975), the generalized
queuing model (Branston 1976), and the semi-poisson model.
Among these, Cowan’s M3 model is widely investigated and ap-
plied for its simplicity and easy approximation of describing longer
headways (Zhang and Wang 2013). Vasconcelos et al. (2012) pro-
posed a simultaneous numerical estimation (SNE) to estimate the
parameters of Cowan’s M3 headway distribution. The requirement of
explicit expression for the Laplace transform of the following-
vehicle headwaydistributionmakes the use of the semi-poissonmodel
limited (Zhang et al. 2007). Further, Cowan M3, Cowan M4, GQM,
and DDNED were extensively analyzed by Zhang et al. (2007).

Vehicle-Type-Specific Headway Distribution

Considering empirical traffic compositions, researchers started ex-
ploring the impact of vehicle types on headway distribution. Ye and
Zhang (2009) categorized headways into four types according to
different combinations of vehicle types (leader–follower). They
adopted three distribution models for the four headway types:
the shifted negative exponential distribution for Truck–Car and
Truck–Truck types, an Erlang distribution for the Car–Truck type,
and a composite model for the Car–Car type (Ye and Zhang 2009).
Weng et al. (2013) conducted an experiment and concluded that
headways are strongly related to the types of the leading and fol-
lowing vehicles. In the examination, they found lognormal distri-
bution best fits the Car–Car headway type, as well as the Car–Truck

Fig. 1. Definition of vehicle time headway
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headway, and that an inverse Gaussian distribution is appropriate
for Truck–Car and Truck–Truck headways. From the study, it was
concluded that the location and scale of a headway distribution
model may be influenced by four factors: traffic flow rate, percent-
age of trucks, lane position, and intensity of work-zone activity.

Although single distribution models are simple and easy to ap-
ply, they are typically inadequate with approximating shorter
(i.e., under 3 s) vehicle time headways. Meanwhile, mixed distri-
bution models are more flexible to describe headways but the cal-
ibration process in general is challenging, and the parameter
estimation is difficult as well due to the complicated structures
of the probability density functions (Zhang et al. 2007). Table 1
shows the scope of recent studies.

Parametric versus Nonparametric Approaches

Despite the fact that many distribution models have been investi-
gated and applied, the existing parametric approaches share a
common feature: the headway are assumed to follow a particular
distribution and then that assumption is checked against empirical
data. The distribution that fits the empirical headway better is se-
lected as the preferable alternative. Therefore, the result is some-
times inaccurate because of our limited capacity to correctly choose
the preferable distribution. Furthermore, parametric headway
models require strict prior knowledge that is often not available.
Although these parametric models are simple and intuitive
to understand, such as Weibull and Poisson distribution, the
goodness-of-fit varies with the location and level of traffic flow
(Zhang and Wang 2013). In addition, one of the major limitations
of parametric models is that you have to make an assumption about
the shape parameter of the headway distribution. There are ways to
limit the possibility of making an incorrect choice, but it’s difficult

to tell whether the correct parametric model has been chosen. Thus,
if the assumption can be justified, parametric method is preferred,
otherwise, a nonparametric technique should be pursued. Essen-
tially, deterministic models do not properly account for the stochas-
tic nature of variables or the transient nature of traffic (Zwahlen
et al. 2007). Mixed models typically depict real situations better.
But at the cost of complex conformation and calibration, nonpara-
metric models work better due to their flexibility and ability of
extracting the statistical features of observed headways without re-
ferring to assumed distribution models with specific parameters
(Zhang and Wang 2013). As Zhang and Wang (2013) stated, the
nonparametric Gaussian kernel headwaymodel outperforms the tra-
ditional parametric model because its flexible data modeling ability,
which requires few stringent hypotheses, can sufficiently handle
subtle and complicated interactions among vehicles and does not
rely on the assumption that the data are drawn from a particular dis-
tribution. The applicability and compatibility is greater than tradi-
tional parametric methods. Also, the transferability test showed
the model is independent to specific sample data and could be gen-
eralized to suit different sample data under a similar traffic scenario.

Methodology

Most tests were conducted based on the data collected from free-
ways or HOV lanes, compared with uninterrupted traffic; however,
work-zone traffic has unique characteristics (Weng et al. 2013).
This paper considers a nonparametric headway distribution based
on work-zone vehicle data. In headway distribution modeling,
goodness-of-fit tests are used to judge how a distribution fits the
sample data (Weng et al. 2013). In this study, the K-S test was
adopted to determine the goodness-of-fit in the work-zone traffic

Table 1. Summary of Recent Vehicle Headway Distribution Studies

Headway study Mixed Vehicle-type specific Parametric Nonparametric Scenario

Zwahlen et al. (2007) X — X — Freeway
Yin et al. (2009) X — X — Urban roadways
Ye and Zhang (2009) X X X — Freeway
Jang et al. (2011) X — X — Suburban arterial
Riccardo and Massimiliano (2012) — — X — Rural two-lane two-way road
Zhang and Wang (2013) X — — X Freeway
Weng et al. (2013) X X X — Work zone
Dong et al. (2015) this study — X — X Work zone

Fig. 2. Summary of vehicle headway distribution models in literature
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scenario. A Chi-square test was utilized to further validate the re-
sults. In Jin et al. (2009) and Yin et al. (2009), parametric methods
were adopted to measure headway distribution, in which lognormal
distribution demonstrate a distinguishing performance with better
goodness-of-fit test results. Therefore, lognormal distribution was
selected to make the comparison in this study.

Nonparametric Model

The estimated probability density function (PDF) of the Gaussian
kernel model is defined as follows (Zhang and Wang 2013):

fðxÞ ¼ 1

nh

Xn
i¼1

1ffiffiffiffiffiffi
2π

p e−ð1=2Þðx−Xi=hÞ2 ð1Þ

where Xi = individual headway measurement. The hwas computed
by

h ¼ 1.06δn−1=5 ð2Þ
where δ = standard deviation of the data set; and n = sample size of
the data set. As a linear composition of Gaussian kernels, the PDF
has differentiable and continuous characteristics derived from the
kernels (Zhang and Wang 2013) that could strengthen the smooth-
ness of the density curve. Kernel density estimators belong to a
class of estimators called nonparametric density estimators. In com-
parison to parametric estimators where the estimator has a fixed
functional form (structure) and the parameters of this function
are the only information to store, nonparametric estimators have
no fixed structure and depend upon all the data points to reach
an estimate.

Parametric Models

In this paper, the lognormal distribution is compared to the
Gaussian kernel function. The models are shown as follows:

fðxÞ ¼ e−ð1=2Þðln x−μ 0=δ 0Þ2

x
ffiffiffiffiffiffi
2π

p
δ 0 ð3Þ

with

μ 0 ¼ ln
μ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 þ μ2
p ð4Þ

δ 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
1þ

�
δ
μ

�
2
�s

ð5Þ

where μ = mean of the data set; and δ2 = variance.

Experimental Section

Study Area and Data Description

The work-zone site is on highway I-91 in Greenfield, Massachu-
setts. The data was collected in 2005 (Heaslip 2007) and the de-
tailed information is presented in Table 2. The length of the
work zone is approximately 0.92 km (0.57 mi) with one lane closed
for a bridge rehabilation project northbound and southbound over
the B&M railroad. The proportion of heavy vehicles was 1.67. The
work-zone traffic-flow data were collected over a week-long time
horizon using pneumatic sensors. The data was collected at the
following five specific locations, shown in Fig. 3:

• Location 1: 4.82 km (3 mi) north of the work area;
• Location 2: 3.22 km (2 mi) from the work zone and after the

location of variable message sign (VMS);
• Location 3: 2.41 km (1.5 mi) form the work zone directly under

the bridge;
• Location 4: inside the taper; and
• Location 5: inside the work area.

The highest volumes were observed on Sunday afternoons. Dur-
ing the week, the a.m. peaks were higher than the p.m. peaks except
for Friday, when the evening peak was higher than the morning
peak and spread out over a 5-hour period. In the evening, the data
show that the speeds at Location 5 were higher than the speeds in
the taper, which can be attributed to its location at the end of the
work area. Evening hours also show higher speeds, which may be
attributed to a lack of congestion and work activities within the
work zone. During the Sunday afternoon congestion, the speed at
Location 5 was higher than at Location 4. This is partially due to
the slow speeds thatwere caused by congestion in advanceof thework
zone. At Location 5, the vehicles speed up leaving the work zone
whereas vehicles at Location 4 were in a stop-and-go traffic flow.

Table 2. I-91 Work-Zone Site and Traffic Description (Data from Heaslip
2007)

Type Data

Work zone —
Length 0.19 km (0.12 mi)
Number of lanes open 1/direction
Duration (LC) Permanent
Timing (LC) 24 h
Posted WZ speed 104.6 km/h (65 mph)
Availability of alternative route No
R.type Bridge
R.strategy 3 phase
Roadway Interstate
Limited access No
Senior center 3.22 km (2 mi)
Pavement condition Good
Nearby attractor Retail
Driveways 0
Curb cuts 0
Geometric —
Number of lanes 2
Lane width 3.66 m (12 ft)
Shoulder width Varies
Maximum upgrade % 2.84%
Maximum downgrade % −1.01
Superelevation Yes
V. curve type Crest
V. curve length 120 m
Design speed 104.6 km/h (65 mph)
Sight distance No
Bridges 1
Traffic —
ADT 43,500
DHV 3,433
PHV 2,871
AM/PM LOS B/B
Truck 1.67
Posted limit 104.6 km (65 mph)
Speed 115.9 km (72 mph)
Mean speed 107.8 km (67 mph)
Crash rate 44/year
Crash type Single vehicle
Injury crashes 10%
PDO crashes 90%
% of old drivers 14%

© ASCE 05015004-4 J. Transp. Eng.
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The shoulder width of this work zone is 3.66 m (12 ft). The free
flow speed is 112 km/h (70 mph) with 2 lanes in each direction. The
annual average daily traffic (ADT) is about 72,000 vehicles.

Experiment Design

Based on the FHWA (2013) Vehicle Classification scheme, the au-
thors classify the vehicles into three types: Car (1–2), Van (3), and
Truck (4–14). Then the traffic composition consists of nine types:
Car–Car, Car–Van, Car–Truck, Van–Car, Van–Van, Van–Truck,
Truck–Car, Truck–Van, and Truck–Truck. Use the for loop algo-
rithm, the data were separated into nine categories correponding
to these nine types. The time of the day was separated into four peri-
ods: morning peak, off-noon, afternoon peak, and evening. For ex-
ample, find the traffic flow where the leading vehicle is a Car and
following vehicle is a Truck. Then within this group, selected the
Car–Truck type of headway that happens in themorning. This yields
the Car–Truckmorning dataset. Repeating this procedure derives 36
subsets of data. Without losing generality, experiments based on the
specific flow types in given time periods are illustrated as follows:
• Morning period (6:00–9:30 a.m.);
• Off-noon period (9:30–16:30 p.m.);
• Afternoon period (16:30–19:30 p.m.); and
• Evening period (19:30–22:00 p.m.)

Statistical Analysis: Probability Metric

In order to give a numerical expression instead of exclusively con-
sidering visual inspection on the results, two statistical tests were

conducted to investigated the goodness-of-fit of both methods:
Chi-square test and K-S test. The K-S test is a form of minimum-
distance estimation used as a nonparametric test to compare a
sample with a reference probability distribution (one-sample K-S
test) or to compare two samples (two-sample K-S test). The K-S
statistic quantifies the distance between the empirical distribution
function of the sample and the cumulative distribution function of
the reference distribution or between the empirical distribution
functions of two samples. A Chi-square distribution is a nonpara-
metric test, which is a statistical test applied to set of categorical
data to evaluate how likely it is that any observed differences be-
tween the sets arose by chance.

Two-Sample K-S Test

The K-S test is commonly used to obtain a probability of similarity
between two distributions to determine whether two datasets differ
significantly. The K-S test is nonparametric and assumption-free,
meaning that it has the advantage of making no assumption about
the distribution of data. The purpose of this test is to obtain the
cumulative distribution function of the two distributions that need
to be compared. The K-S distance is a measure defined as the maxi-
mum value of the absolute difference between two cumulative dis-
tribution functions; it measures the largest absolute difference
between two distribution functions FðtÞ and GðtÞ for varying t.
In a similar setting, the K-S distance is defined by

ρKðX;YÞ∶ ¼ kF − Gk∞ ¼ sup
t⊂R

jPðX ≤ tÞ − PðY ≤ tÞj

¼ sup
t
jFðtÞ − GðtÞj ð6Þ

The supremum is the least upper bound of a set. Given a sample
of observations x ¼ ðx1, : : : ,xnÞ, the empirical distribution function
Fn is given by the following expression:

FnðtÞ ¼
1

n
#fxijxi ≤ tg ð7Þ

where #f : : : g = number of elements contained in the set f : : : g;
and Fn = discrete probability distribution function on the real line.
For large values of n, the empirical distribution converges to the
theoretical one.

Chi-Square Test

The Chi-square test is utilized to examine if the sample data came
from a population with certain distribution. The value of the test-
statistic is

χ2 ¼
Xn
i¼1

ðOi − EiÞ2
Ei

ð8Þ

where χ2 = Pearson’s cumulative test statistic, which asymptoti-
cally approaches a χ2 distribution; Oi = observed frequency for
bin i; Ei = expected (theoretical) frequency for bin i as asserted
by the null hypothesis; and n = number of categories, groupings,
or possible outcomes.

A distinguishing feature of the Chi-square goodness-of-fit test is
that it could be applied to any univariate distribution for which you
can calculate the cumulative distribution function (CDF). The
Chi-square goodness-of-fit test is applied to binned data, but this
is not a restriction, because you can simply calculating a histogram
or frequency table.

Fig. 3. Study site of work zone on I91 in Greenfield, Massachusetts
(imagery ©2015 Google, map data ©2015 Google)
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Descriptive Statistical Analysis

The fundamental statistical characteristics of headways are shown
in Table 3 to give a perception on the dataset. For example, in the
morning period, the mean of the headway was approximately 7 s
and the standard deviation was approximately 9–10 s. The means
of headway was approximately 5 s, and standard deviation was
approximately 6 s for both off-noon and afternoon periods.
The means and standard deviations of headway were both above
10 s in evening period.

Results Analysis

In order to examine the goodness-of-fit for both models, two-
sample K-S test and Chi-square were employed to provide
statistical evidence. A smaller K-S statistic value indicates a better
goodness-of-fit, and the decision to reject the null hypothesis is
made by comparing the p-value with the significance level α. The
comparison of K-S statistics and hypothesis tests are illustrated in
Table 4. The null hypothesis is that the two samples of data are
generated from the same distribution and the significant
confidence level is 95%.

It can be concluded from Table 4 that the nonparametric model
performs better than the parametric model in most scenarios. For
example, for Car–Car type headways, during the morning period,

the K-S test statistic of the Gaussian kernel-based model is 0.0714,
and the corresponding value of the lognormal distribution model is
0.1327. Although both models do not reject the null hypothesis test,
the K-S test statistic value of the Gaussian kernel model is smaller
than the lognormal distribution model. Under some circumstances
such as Van–Car type headways, the nonparametric method with a
Gaussian kernel-based model performs much better than the para-
metric model. During the off-noon period, the hypothesis that the
headway data follows Gaussian kernel model was not rejected
while the hypothesis that headway data follow the lognormal model
was rejected. However, both models cannot provide satisfactory
goodness-of-fit for the Car–Truck type headways in the evening
period: both reject the null hypothesis at α ¼ 0.05. Also most traf-
fic flow types during the off-noon period rejected the null hypoth-
esis under parametric model conditions except Truck–Car and
Truck–Van type while the nonparametric model did not reject.
These findings indicate that the nonparametric model with a
Gaussian kernel displayed a better performance than the studied
parametric model of lognormal distribution. In Table 5, Chi-square
test are conducted for further examination.

Observed from Table 5, neither distribution rejects the null
hypothesis, that is, the empirical data follows the distribution.
However, most χ2 values of the nonparametric distribution are
lower than in parametric distribution column. Since the lower
the χ2 value, the better the empirical data fits the distribution,
the nonparametric distribution displays its strength in depicting

Table 3. Fundamental Statistical Analysis of Collected Work Zone Headway Data

Type Period Sample size Means of headways (s) Standard deviation (s) Maximum value (s) Minimum value (s)

Car–Car Morning 9,285 7.19 10.19 196 0
Off-peak 23,849 5.27 6.10 60 0
Afternoon 14,044 5.02 6.15 75 0
Evening 1,212 14.58 18.86 264 0

Car–Van Morning 3,477 7.41 9.46 118 0
Off-peak 8,976 5.58 6.30 68 0
Afternoon 4,567 5.24 6.08 70 0
Evening 1,497 11.34 13.24 108 0

Car–Truck Morning 2,459 7.76 9.65 149 0
Off-peak 6,469 6.24 6.53 85 0
Afternoon 3,023 6.31 7.20 75 0
Evening 1,212 14.58 18.86 264 0

Van–Car Morning 3,503 7.61 9.79 117 0
Off-peak 8,867 5.49 6.31 75 0
Afternoon 4,602 5,31 6.43 63 0
Evening 1,484 12.23 14.85 125 0

Van–Van Morning 1,708 7.15 9.41 122 0
Off-peak 4,494 5.32 5.99 66 0
Afternoon 2,061 5.17 6.08 67 0
Evening 623 11.81 15.13 118 0

Van–Truck Morning 1,128 7.41 8.90 76 0
Off-peak 3,121 6.00 6.26 65 0
Afternoon 1,191 6.08 6.53 50 0
Evening 433 13.85 13.98 69 0

Truck–Car Morning 2,406 7.51 9.89 121 0
Off-peak 6,505 5.62 6.34 59 0
Afternoon 2,958 5.51 6.46 64 0
Evening 1,200 13.88 16.16 121 0

Truck–Van Morning 1,113 7.35 9.15 83 0
Off-peak 2,933 5.62 5.94 60 0
Afternoon 1,201 5.25 5.83 65 0
Evening 416 14.71 17.74 121 0

Truck–Truck Morning 866 7.49 8.74 68 0
Off-peak 2,532 5.99 6.35 61 0
Afternoon 951 5.75 6.44 43 0
Evening 590 13.43 17.08 165 0
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the work-zone headway distribution. The relative error is pre-
sented to provide visual comparisons of the goodness-of-fit
index. It is defined as

relative error ¼ model generated data − observed data
observed data

ð9Þ

Car–Car and Van–Car Headway Distribution

Figs. 4(a–d) present a visual performance comparisons of Car–
Car and Van–Car headway distributions through a probability
density function and cumulative distribution function in the eve-
ning and over a day’s off-noon period between the nonparametric
method and parametric method using the headway data collected
from the I-91 work zone. Figs. 4(e and f) present the relative
error of these two methods. The curves of both CDF and
PDF directly reflect that the nonparametric method is better than
the parametric method in approximating the observed headway
data. In the K-S test, the nonparametric model did not reject
the null hypothesis while the parametric model did. Relative error
plots at the bottom of Fig. 4 confirms the conclusion drawn from
statistical test.

Car–Van and Car–Truck Headway Distribution

Figs. 5(a–d) exhibit a visual performance of Car–Van and Car–
Truck headway distributions between the nonparametric and
parametric method using the headway data collected from the
work zone during the morning peak and off-noon periods. Figs. 5
(e and f) present the relative error of these two methods. The rel-
ative error of the nonparametric method in the beginning is small
and steady while the relative error of the parametric method is large
and fluctuates at the beginning. This observation is consistent with
the earlier findings in goodness-of-fit test, namely that the nonpara-
metric model outperforms the parametric model.

Van–Van and Van–Truck Headway Distribution

This section provides further analysis of Van–Van and Van–Truck
headway distributions during both the afternoon peak and off-noon
periods. Figs. 6(a–d) show the experimental results, which verified
the transferability of the nonparametric method with a Gaussian
kernel function. The visual comparison supports the argument that
the overall goodness-of-fit for the nonparametric model with
Gaussian kernel function is favorable for different headway sam-
ples. In addition, the relative error plots in Figs. 6(e and f) provide
supporting numerical evidence that the Gaussian kernel model is

Table 4. Comparison of K-S Test Results between Nonparametric and Parametric Models, I-91

Type Period

Nonparametric model with Gaussian kernel
function Parametric model lognormal distribution

K-S statistic Hypothesis test K-S statistic Hypothesis test

Car–Car Morning 0.0714 Not reject 0.1327 Not reject
Off-peak 0.0166 Not reject 0.2500 Reject
Afternoon 0.0400 Not reject 0.2533 Reject
Evening 0.0667 Not reject 0.1704 Reject

Car–Van Morning 0.1695 Not reject 0.2881 Reject
Off-peak 0.1029 Not reject 0.2647 Reject
Afternoon 0.0571 Not reject 0.1857 Not reject
Evening 0.0370 Not reject 0.1296 Not reject

Car–Truck Morning 0.0872 Not reject 0.2081 Reject
Off-peak 0.1412 Not reject 0.3058 Reject
Afternoon 0.0667 Not reject 0.1867 Not reject
Evening 0.2916 Reject 0.2311 Reject

Van–Car Morning 0.0684 Not reject 0.1453 Not reject
Off-peak 0.0400 Not reject 0.2400 Reject
Afternoon 0.0634 Not reject 0.1111 Not reject
Evening 0.0640 Not reject 0.1520 Reject

Van–Van Morning 0.1557 Not reject 0.2131 Reject
Off-peak 0.1363 Not reject 0.2727 Reject
Afternoon 0.0746 Not reject 0.1493 Not reject
Evening 0.0593 Not reject 0.0847 Not reject

Van–Truck Morning 0.0658 Not reject 0.1579 Not reject
Off-peak 0.0769 Not reject 0.2615 Reject
Afternoon 0.0400 Not reject 0.1200 Not reject
Evening 0.0580 Not reject 0.1449 Not reject

Truck–Car Morning 0.1240 Not reject 0.2479 Reject
Off-peak 0.0340 Not reject 0.2203 Not reject
Afternoon 0.0469 Not reject 0.1406 Not reject
Evening 0.0579 Not reject 0.2479 Reject

Truck–Van Morning 0.0602 Not reject 0.1325 Not reject
Off-peak 0.0833 Not reject 0.2167 Not reject
Afternoon 0.1231 Not reject 0.1538 Not reject
Evening 0.0661 Not reject 0.0826 Not reject

Truck–Truck Morning 0.0588 Not reject 0.1029 Not reject
Off-peak 0.0656 Not reject 0.2459 Reject
Afternoon 0.0465 Not reject 0.1163 Not reject
Evening 0.1212 Not reject 0.1818 Reject
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superior to the parametric model in approximating empirical head-
ways. This implies that the proposed Gaussian kernel model can be
used to model the different headways’ time periods with varying
traffic flow conditions in a freeway work-zone setting.

Model Goodness-of-Fit

According to the goodness-of-fit tests, the nonparametric distri-
bution demonstrates its strength in depicting headways with
specific vehicle types in various time periods. Still, the necessity
of specifying the vehicle types and time periods needs further
investigation. An experiment that does not separate the vehicle
types and time periods was developed as shown Tables 6 and 7.
The null hypothesis is that the sample data follow the proposed
distribution.

As can be concluded, when all vehicle types are treated as
a whole, the K-S test rejected the null hypothesis while the Chi-
square test did not. In the vehicle-type-specific with four time peri-
ods approach, K-S test did not reject most null hypotheses, and its
goodness-of-fit also demonstrated a really good result. Considering
these findings, it is necessary to model the headway in different
traffic types with certain time periods, which validates the signifi-
cance of our research. Figs. 7(a and b) still favor the conclusion that

the nonparametric model performs better than the paramet-
ric model.

Transferability Test

As Koppelman and Wilmot (1982) stated, “First, we define transfer
as the application of a model, information, or theory about behavior
developed in one context to describe the corresponding behavior in
another context. We further define transferability as the usefulness
of the transferred model, information, or theory in the new context.”
There are two categories of transferability tests: temporal transfer-
ability tests and spatial transferability tests. The key distinction be-
tween them is that temporal transferability focuses on application of
a model developed using data collected in different periods of time,
while spatial transferability focuses on application of a model devel-
oped using data collected in different spatial area. In this paper, both
temporal and spatial are involved (Fox et al. 2014).

A common used statistical test in the literature is the transfer-
ability test statistic (TTS), which assesses the transferability of the
base-model parameters b in the transfer context t, under the hypoth-
esis that the two sets of parameters are equal (Fox et al. 2014)

TTStðβbÞ ¼ −2½LLtðβbÞ − LLtðβtÞ� ð10Þ

Table 5. Comparison of χ2 Test Results between Nonparametric and Parametric Models, I-91

Type Period

Nonparametric model with Gaussian
kernel function Parametric model lognormal distribution

χ2 stats Hypothesis test χ2 stats Hypothesis test

Car–Car Morning 3.8 × 10−4 Not reject 2.1 × 10−3 Not reject
Off-peak 1.9 × 10−4 Not reject 5.5 × 10−4 Not reject
Afternoon 2.2 × 10−4 Not reject 4.6 × 10−3 Not reject
Evening 9.9 × 10−4 Not reject 2.2 × 10−3 Not reject

Car–Van Morning 8.6 × 10−4 Not reject 3.2 × 10−3 Not reject
Off-peak 3.4 × 10−4 Not reject 5.6 × 10−3 Not reject
Afternoon 4.3 × 10−4 Not reject 5.7 × 10−3 Not reject
Evening 2.3 × 10−3 Not reject 2.9 × 10−3 Not reject

Car–Truck Morning 5.6 × 10−4 Not reject 3.6 × 10−3 Not reject
Off-peak 2.2 × 10−4 Not reject 4.9 × 10−3 Not reject
Afternoon 6.5 × 10−4 Not reject 5.3 × 10−3 Not reject
Evening 1.8 × 10−3 Not reject 1.6 × 10−3 Not reject

Van–Car Morning 9.5 × 10−4 Not reject 3.3 × 10−3 Not reject
Off-peak 2.9 × 10−4 Not reject 5.1 × 10−4 Not reject
Afternoon 6.5 × 10−4 Not reject 6.1 × 10−3 Not reject
Evening 2.4 × 10−3 Not reject 2.3 × 10−3 Not reject

Van–Van Morning 1.4 × 10−3 Not reject 3.1 × 10−3 Not reject
Off-peak 4.4 × 10−4 Not reject 5.7 × 10−3 Not reject
Afternoon 7.9 × 10−4 Not reject 6.0 × 10−4 Not reject
Evening 5.4 × 10−3 Not reject 2.5 × 10−3 Not reject

Van–Truck Morning 2.0 × 10−3 Not reject 4.9 × 10−3 Not reject
Off-peak 4.5 × 10−4 Not reject 6.0 × 10−3 Not reject
Afternoon 1.3 × 10−3 Not reject 8.2 × 10−3 Not reject
Evening 4.8 × 10−3 Not reject 2.7 × 10−3 Not reject

Truck–Car Morning 1.1 × 10−3 Not reject 3.3 × 10−3 Not reject
Off-peak 3.6 × 10−4 Not reject 6.2 × 10−3 Not reject
Afternoon 5.7 × 10−4 Not reject 6.6 × 10−3 Not reject
Evening 3.2 × 10−3 Not reject 1.5 × 10−3 Not reject

Truck–Van Morning 2.1 × 10−3 Not reject 5.3 × 10−3 Not reject
Off-peak 4.1 × 10−4 Not reject 7.1 × 10−3 Not reject
Afternoon 7.4 × 10−4 Not reject 6.8 × 10−3 Not reject
Evening 7.8 × 10−3 Not reject 2.7 × 10−3 Not reject

Truck–Truck Morning 1.9 × 10−3 Not reject 5.7 × 10−3 Not reject
Off-peak 4.3 × 10−4 Not reject 6.8 × 10−3 Not reject
Afternoon 1.4 × 10−3 Not reject 1.09 × 10−2 Not reject
Evening 3.8 × 10−3 Not reject 3.2 × 10−3 Not reject
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Fig. 4. Probability density functions and cumulative density functions of the lognormal distribution and the nonparametric model with
Gaussian kernels fitted to headway data of Car–Car type, and the relative errors in evening and off-noon periods: (a) Car–Car, PDF,
evening; (b) Car–Car, CDF, evening; (c) Van–Car, PDF, off-noon; (d) Van–Car, CDF, off-noon; (e) Car–Car, evening; (f) Van–Car,
evening
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Fig. 5. Probability density functions and cumulative density functions of the lognormal distribution and the nonparametric model with Gaussian
kernels fitted to headway data of Car–Van and Car–Truck types, and the relative errors in morning peak and off-noon periods: (a) Car–Van, PDF,
morning peak; (b) Car–Van, CDF, morning peak; (c) Car–Truck, PDF, off-noon; (d) Car–Truck, CDF, off-noon; (e) Car–Van, evening peak;
(f) Car–Truck, off-noon
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Fig. 6. Probability density functions and cumulative density functions of the lognormal distribution and the nonparametric model with Gaussian
kernels fitted to headway data of Van–Van and Van–Truck types, and the relative errors in afternoon peak and off-noon periods: (a) Van–Van, PDF,
afternoon peak; (b) Van–Van, CDF, afternoon peak; (c) Van–Truck, PDF, off-noon; (d) Van-Truck, CDF, off-noon; (e) Van–Van, afternoon peak;
(f) Van–Truck, off-noon
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where LLtðβbÞ = log-likelihood for the model applied to the trans-
fer data; LLtðβtÞ = log-likelihood for the model estimated on the
transfer data; and TTS ¼ β2 distributed with degree of freedom
equal to the number of model parameters.

In this paper, two different datasets collected from different
times and locations are utilized to examine the transferability of
the nonparametric model. These two datasets were extracted from
different traffic flows, Car–Car and Car–Van, which would further
enhance the validity of the transferability test.

After calculation of the log-likelihood, model based on the Car–
Van dataset reaches LLtðβb ¼ −469.8964Þ and the model based on
Car–Car dataset achieves LLtðβtÞ ¼ −395.7796. This yields
TTS ¼ 148.2338. The χ2 statistic with 60 degree of freedom under
a 99% confidence level is 91.952. Compared to the derived
TTS ¼ 148.2338, the result of the log-likelihood test provides stat-
istically significant evidence, at the 99% confidence level, that the
model could be employed in different datasets.

Summary, Conclusion, and Future Work

In this paper, a nonparametric model with a Gaussian kernel-based
method is used to model the vehicle-type-specific headway distri-
bution in a freeway work zone. This work adopts the FHWAVe-
hicle Classification scheme, classifying vehicle into three types:
Car, Van, Truck. Due to the requirement of underlying behavior
assumptions, a nonparametric model is pursued in this paper.
The distribution with Gaussian kernel function is used because
of its capability in handling complex interactions among vehicles
in a freeway work zone setting as well as the fact that it requires no
prior assumption about the data. Awork zone on I-91 in Greenfield,
Massachusetts is selected as the study site for this paper. A com-
parison between the Gaussian kernel-based model and lognormal
model was presented by conducting a K-S test and Chi-square test.

The K-S test results indicate that the nonparametric model with
Gaussian kernel performs better than the parametric model with
lognormal distribution. In only one case (Car–Truck type headway
in the evening period) does the nonparametric model reject the null
hypothesis. This is partially due to the fact that there is a lower
traffic volume in the observation period. In Chi-square test, the
lower χ2 value of the nonparametric distribution indicates its supe-
riority in depicting headway over the parametric distribution. Vis-
ual comparisons by plotting empirical headway distribution are
also presented. Both the PDF and CDF plots show the nonparamet-
ric model performs better than the parametric model in fitting the
empirical headways. This observation is supported by the relative
error curve. It is found the reason why the null hypothesis is re-
jected often by parametric models is mainly because the fluctuation
of the relative error is large at the starting period. One possible ex-
planation is that parametric distribution’s assumption on the shape
parameter lead to the inaccuracies in fitting the data. In order to
further validate the results, a different work zone dataset from Jack-
sonville without specifying the vehicle type and time period was
utilized to test both distributions. The K-S test rejected the null hy-
pothesis while it did not reject it in vehicle-type-specific case,
which suggests it is necessary to consider the vehicle type sepa-
rately with different time periods. The following transferability test
demonstrated the powerful ability of the nonparametric approach to
be employed in different datasets.

Table 6. Comparison of K-S Test Results between Nonparametric and
Parametric Models, Jacksonville

Method Measurement Result

Nonparametric model
with Gaussian kernel function

K-S stats 0.8
Hypothesis test Reject

Parametric model
lognormal distribution

K-S stats 0.65
Hypothesis test Reject

Table 7. Comparison of χ2 Test Results between Nonparametric and
Parametric Models, Jacksonville

Method Measurement Result

Nonparametric model
with Gaussian kernel function

χ2 stats 0.01425
Hypothesis test Not reject

Parametric model
lognormal distribution

χ2 stats 0.05305
Hypothesis test Not reject

Fig. 7. Probability density functions and cumulative density functions of the lognormal distribution and the nonparametric model with Gaussian
kernels fitted to headway data, and the relative errors of both methods
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Although the statistical tests and numerical comparisons indi-
cate the robustness of the nonparametric method in modeling
work-zone vehicle-type-specific headway distributions, the dura-
tion of the data is not long enough to conclude that the nonpara-
metric method is the natural candidate in this modeling endeavor. A
more comprehensive work-zone traffic dataset is desired with dif-
ferent work zone scenarios from both interstate highways and ar-
terials, such as pavement resurfacing, bridge rehabilitation, lane
widening, or utility work. Other than the adopted Gaussian kernel
function, other forms of kernel functions are worth investigating to
evaluate the bias of statistical methods. In summary, this research
adds strength to the literature in the area of modeling work-zone
vehicle-type-specific headway distributions in terms of the merits
of parametric and nonparametric methods.
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