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Abstract1

Headway is significant to the traffic flow control, and many researches are conducted2
on this topic. Previous work mostly focused on the parametric models, which based3
on certain assumptions, thus its reliability remain discussing. This paper employs4
the nonparametric distribution model with Gaussian kernel functions to investigate5
the data work zone. Without any assumptions, Gaussian kernel model is capable to6
catch the intrinsic features from empirical headway data for depicting the headway7
distribution. The nonparametric model would be more applicable and desirable in8
various scenarios. Also, we aim on the vehicle type-specified model: car-car, car-van,9
car-truck, van-car, van-van, van-truck, truck-car, truck-van, and truck-truck. The K-S10
test confirmed the good performance of the nonparametric model, all K-S statistics and11
hypothesis test indicate that nonparametric model with Gaussian kernel-based model12
is better than parametric model with lognormal distribution. Experiments were further13
conducted on the nine types of headway to provide a visual evidence. The Gaussian14
kernel model shows very good capability in describing the probability density function15
and cumulative density function, the relative error is also small and limit to 0. The16
lognormal distribution indicate a good fit in approximate headway distribution, we use17
lognormal distribution to compare with Gaussian kernel model, results shows Gaussian18
kernel model performs better in approximating and the relative error is steady and19
small while the lognormal distribution has a big fluctuation in the beginning. All the20
results find that nonparametric distribution model with Gaussian kernel functions has21
a better goodness-of-fit in type-specified work zone scenario.22
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1 Introduction1

1.1 Background2

Vehicle time headway, defined as the elapsed time in seconds between the arrival of the3

leading and following vehicle at an observation point, is a measure of space between two4

successive vehicles. The modelling of vehicle time headway distribution is essential to many

FIGURE 1 Definition of Vehicle Time Headway

5
aspects of traffic flow fundamental analysis, for example, capacity estimation, microscopic6

simulation, and safety analysis (i.e., time-to-collision) [1]. The fundamentality and signifi-7

cance to microscopic traffic flow modelling and simulation has led to many investigations on8

this topic.9

For traffic simulation models, a key component of determining the simulation model10

performance is vehicle inter-arrival times. Researchers, therefore, devote considerable efforts11

on the accurate headway distribution models [10]. In addition, time headway could be12

considered as the reciprocal of flow rate [7]. Under certain circumstances, vehicle time13

headway can be used to estimate the road capacity. An accurate headway distribution14

would help engineer to maximize the road capacity and minimize the vehicle delays [7].15

Additionally, as it is related to vehicle merging and lane-changing behaviour, it is essential16

to estimate road capacity or adjust the signal control parameters at signalized intersections.17

Furthermore, it is also related to traffic safety, driver behaviour, and traffic flow theory. Since18

vehicle time headway modelling has important ramifications for applications [6], ranging from19

traffic control to the safety issue. Hence, an inspection on headway distributions is essential20

and important.21

Much studies have been conducted on the headway distribution model. Zhang [12]22

proposed a nonparametric model with Gaussian kernel method. He investigated the freeway23

scenario without specifying the vehicle type. The results shows very well and better than24

the studied parametric model. Weng [11] studied vehicle type-specific headway distribution25

in work zone. He showed the most fitted distribution in every vehicle type. Our paper26

innovatively proposed a study on the work zone distribution using nonparametric method27

in [12]. Better than Zhang’s model, we did a specification on vehicle type which showed28

very necessary in headway study, and we investigated the work zone scenario. Different from29

the Weng’s study, we adopt the nonparametric model and conducted a new specification on30

the vehicle type. Parametric methods share a common feature, that provide some methods31

first and use empirical data to confirm which is better. The crux is our limited recognition32

on the distribution. And parametric methods often established on certain assumptions.33

Nonparametric model inherent a flexible form and less assumption, demonstrate a better34
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performance than the parametric model [12] make us believe it would be the best method,1

and it’s better in extracting the statistical features inherent in the data, which is the reason2

we choose the nonparametric model.3

1.2 Objective of Paper4

The objective of this paper is to present a vehicle-type specific headway distribution study5

through a non-parametric approach.6

1.3 Paper organization7

The remainder of this paper is organized as follows. Theory and methodology were intro-8

duced in the section 3. Section 4 described study area, data and experiment design. Then9

the statistical test and analysis were conducted in section 5 and visual performance and10

results analysis were presented in section 2. A discussion on the motivation of methods and11

the results were exhibited in section 7. At last, the conclusion of the paper was drawn in12

section 8, and acknowledgement was made in section ??.13

2 Literature Review14

Many headway distribution models have been derived and calibrated using empirical traffic15

data. In general, these models could be categorized into two groups [7]: single statistical16

distribution models and mixed models.17

2.1 Single Distribution Models18

Representatives of the single statistical distribution family include normal distribution, log-19

normal distribution [15], Weibull distribution [14], the Erlang distribution, exponential dis-20

tribution, log-logistic distribution, Cowan’s M3 and M4 distribution [13], inverse gaussian21

distribution and Gamma distribution etc. For instance, Sun and Benekoal [14] used Weibull22

distribution model to describe the vehicle headways in work zone. Jang et al. [10] [17] ex-23

amined that Johnson SU distribution, together with Johnson SB distribution and lognormal24

distribution are transformations of a normal distribution, which can be employed to depict25

most naturally occurring uni-modal sets of data. Jin et al. [9] studied the departure headways26

and indicated that the distribution headways in a queue approximate a certain log-normal27

distribution. Al-Ghamdi [19] recommended four headway distribution models at different28

flow rates, such as negative exponential distribution for the low flow rate, shifted exponential29

and gamma distribution for the middle flow rate, and Erlang distribution for the high flow30

rate. Riccardo’s et al. analyzed case study on rural two-lane two-way roads [3] suggested31

that inverse Weibull distribution best fits the headways observed for the most of situations,32

better performed than the log logistic, person 5 and person 6, regardless of flow rate range.33

Yin’s et al. [4] studied the dependence of headway distribution on traffic status and showed34

that log-normal distribution is adequate to fit headway when that traffic is in free flow state,35

and log-logistical distribution is suitable in congestion state. Serge and Hein [5] presented36
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and Branston’s generalized queueing model for headway distribution and a new estimation1

method is proposed.2

2.2 Mixed Distribution Models3

Many of the stationary distributions can fit the empirical data of free flow but not the4

congested flow, and their performances are not satisfactory. Then mixed headway distri-5

bution models were introduced to better capture the headway distribution characteristics.6

The representatives of mixed models include double displaced negative exponential distri-7

bution (DDNED) [16], normal distribution + shifted negative exponential distribution [8],8

negative exponential distribution + shifted negative exponential distribution [8] Generalized9

Queuing Model (GQM) [7] and Semi-Poisson distribution etc. For instance, Zhang et al. [7]10

found that double displaced negative exponential distribution (DDNED) and lognormal dis-11

tribution best fit the high occupancy vehicle (HOV) lane and regular lanes. In a vehicle12

type-specific but car dominant case, Ye et al. [8] proved that normal distribution + shifted13

negative exponential distribution could not fit the data well, while negative exponential14

distribution + shifted negative exponential distribution fitted very well [8]. Some mixed15

distribution were developed based on the assumption that a headway H consists of two com-16

ponents, H = T + U , where T is the “tracking or following” component and U is the “free”17

component [7], according to this, many important models are derived such as Cowan M1-18

M4, the Generalized Queuing Model [18], and Semi-Poisson model. Among these, Cowan’s19

M3 model are widely investigated and applied for its simplicity and easy approximation in20

describing longer headways [12]. Because the explicit expression for the Laplace transform21

of the following-vehicle headway distribution is required, the use of Semi-Poisson model has22

been limited [7]. In [7], Cowan M3, Cowan M4 and GQM, DDNED etc. have been analysed.23

2.3 Vehicle-type Specific Headway Distribution24

Considering the empirical traffic compositions, researchers started exploring the impact of25

vehicle-types on the headways. Ye and Zhang [8] categorized headways into four types26

according to different combination of vehicle types (leader-follower pairs). They adopt three27

distribution models for the four headway types: the shifted negative exponential distribution28

for truck-car and truck-truck types, the Erlang distribution for the car-truck type, and a29

composite model for the car-car type [11]. Weng et al. [11] conducted the test and concluded30

that headways are strongly related to the types of the leading and following vehicles. The31

results show that the investigation of the headway by four types is reasonable [11]. In the32

examination, they found that lognormal best fit the Car-Car headway type, as well as the33

Car-Truck headway, and inverse Gaussian distribution is best for the Truck-Car and Truck-34

Truck headway [11]. They also concluded that four factors: traffic flow rate, percentage of35

trucks, lane position and intensity of work zone activity, may influence the location and scale36

of a headway distribution model [11].37

Although single distribution models are simple and easy to apply, they are typically38

inadequate when approximating shorter vehicle time headways. However, mixed distribution39

are more flexible to describe headways than single distribution, but the calibration process in40

general is challenging, and the parameter estimation is difficult as well due to the complicated41
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structures of the probability density functions [7].1

TABLE 1 A summary of the vehicle headway distribution study

Headway Study Mixed Vehicle-type Parametric Non- Scenario
Specific parametric

Zwahlen (1999) √ √ Freeway
Yin (2009) [4] √ √ Urban roadways
Ye (2009) [8] √ √ √ Freeway
Jang (2011) [10] √ √ Suburban Arterial
Riccardo (2012) [3] √ Rural two-lane

two-way road
Zhang (2013) [12] √ √ Freeway
Weng (2013) [11] √ √ √ Work Zone

2.4 Parametric vs. Nonparametric2

Despite many distribution models have been investigated and applied, all these models are3

parametric and assume that the headway follows a known distribution or a composite dis-4

tribution. The existing parametric approaches, no matter what functional form of the dis-5

tribution is, share a common nature. It starts with a bold assumption the headway follow6

some types of distributions and then check with empirical data. Whichever fits the empir-7

ical distribution the best is favored. Therefore, the result sometimes is inaccurate because8

of our limited capacity to guess the known distribution with the inevitable mis-perception.9

Furthermore, parametric headway model require strict prior knowledge and certain condi-10

tions which are difficult to meet. Although these parametric models are simple and intuitive11

to understand, the goodness-of-fit for these model varies with the location and traffic flow12

level [12]. Essentially, deterministic models could not properly account for the stochastic13

nature of the variables or the transient nature of the traffic [2]. Mixed models typically fit14

real situation better, but as the cost of complex conformation and calibration. While non-15

parametric model could work better due to their flexibility in forms and ability of extracting16

statistical features of observed headways without referring to assumed distribution models17

with specific parameters [12]. As [12] stated, the nonparametric Gaussian kernel headway18

models outperform the traditional parametric model because of the flexible data modeling19

ability, requires few stringent hypotheses and can sufficiently handle subtle and complicated20

interactions among vehicles, and do not rely on the assumption that the data drawn from a21

particular distribution. So its applicability and compatibility is much wider than the tradi-22

tional parametric methods. Also the test showed the model is independent to specific sample23

data and could be generalized to suit different sample data under similar traffic scenario.24

3 Theory/Methodology25

Most tests were conducted based on the data that are collected from freeway or HOV, com-26

pared with uninterrupted traffic, work zone traffic has unique characteristics [11]. We would27
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study the nonparametric headway distribution based on work zone vehicle date. In headway1

distribution modeling, two goodness-of-fit tests are used to judge how well a distribution2

fits the sample data: the Chi-square test and Kolmogorov-Smirnov (K-S) test [11]. And we3

would adopt K-S tests to determine the goodness-of-fit in the work zone traffic scenario. In4

most case, parametric methods were adopted to measure headway distribution, and lognor-5

mal distribution and some certain distribution always demonstrates a better performance. In6

addition, with many research conducted on the headway distribution study, little study focus7

on the nonparametric model. Compare to the parametric method, nonparametric methods8

exhibit a good capability in capture the intrinsic character. A Gaussian Kernel-Based ap-9

proach in modeling headway distribution based on the freeway headway data [12] shows a10

good result. We could employ this method to have an examination on the work zone data. If11

possible, the influence of the car type to the headway could be considered, and the headway12

mode could be classified into specific groups as the [11] [8] conducted.13

3.1 Nonparametric Model14

The estimated PDF of the Gaussian kernel model is calculated as follows[12]:15

f (x) =
1

nh

n∑
i=1

1√
2π
e
−

1

2

x−Xi

h

2

(1)

where Xi is an individual headway measured. The h was computed by16

h = 1.06δn−1/5 (2)

where δ is the standard deviation of the data set and n is the size of the data set.17

This equation indicates that a high value of the PDF could be get when more sample18

points closely aggregate at a certain point. And as a linear composition of Gaussian kernels,19

the PDF have differentiable and continuous characteristics derived from the kernels [12] could20

strengthen the smoothness of the density curve.21

3.2 Parametric Models22

In this paper, we use the better performed lognormal distribution to compare with the23

Gaussian kernel function. The model are shown as follows:24

f (x) =
e
−

1

2

 lnx− µ′
δ′

2

x
√

2πδ′
(3)

with25

µ′ = ln
µ2√
δ2 + µ2

(4)

26

δ′ =

√
ln[1 +

(
δ

µ

)2

] (5)
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where µ is the mean of the data set, and δ2 is the variance. The lognormal distribution1

perform good in many investigations on the headway distribution model.2

4 Experimental section3

4.1 Study Area Description4

The work zone site is on I-91 in Massachusetts, the data was collected in 2005. This section5

is easy to take care of. :6

4.2 Data Description7

The work zone traffic flow data was collected over a week long time horizon.8

4.3 Experiment Design9

The data was collected in 2005 on I-91 in Massachusetts. Based on the FHWA Vehicle10

Classification scheme, we classify the vehicles into three types: Car, Van, and Truck. Then11

the traffic flow consists of nine types: Car-Car, Car-Van, Car-Truck, Van-Car, Van-Van,12

Van-Truck, Truck- Car, Truck-Van, and Truck-Truck. According to the time-line of the day,13

separate the day into four periods: morning peak, off-noon, afternoon peak and evening.14

Without losing generality, experiments based on the specific flow types in given time periods15

are illustrated as follows. In order to examine the goodness-of-fit, we employ the K-S test to16

provide the statistical evidence, and compare Gauss kernel model with lognormal distribution17

which tested as the best distribution in Car-Car and Car-Truck type in work zone[11]. Also,18

We selected some of them to make a visualized performance comparison.19

5 Statistical Analysis: Probability Metric20

In order to give an numerical expression instead of only visual performance, we conducted21

a statistical test to investigated the goodness-of-fit of the nonparametric method. There22

are two often-used measuring criteria to examine the goodness-of-fit, Chi-square test and23

Kolmogorov-Smirnov (K-S) test. The Chi-square test, however, is too strict that a model24

would be thrown off with only a few ”bad” fits[12]. In this study, we adopt K-S test to25

measure goodness-of-fit of the selected nonparametric method. The K-S test is a form of26

minimum distance estimation used as a nonparametric test of equality of one-dimensional27

probability distribution used to compare a sample with a reference probability distribution28

(one-sample K-S test), or to compare two samples (two-sample K-S test). The Kolmogorov-29

Smirnov statistic quantifies the distance between empirical distribution function of the sam-30

ple and the cumulative distribution function of the reference distribution, or between the31

empirical distribution functions of two samples.32
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5.1 One-sample K-S Test1

The one-sample K-S test is defined as2

Dn = sup
x
|Fn (x)− F (x)| (6)

where Fn(x) denotes the empirical distribution function, and F (x) denotes the proposed3

cumulative distribution function. The term Dn is the maximum vertical distance between4

Fn(x) and F (x), and n is the sample size. Two sample K-S test evaluates the difference5

between the CDF of the distribution of two sample data.6

5.2 Two-sample K-S Test7

The Kolmogorov-Smirnov test (KS test) is usually used to obtain a probability of similarity8

between two distributions to determine whether two datasets differ significantly. The KS-9

test is non-parametric and distribution free meaning that it has the advantage of making10

no assumption about the distribution of data. The mechanism behind this test is to obtain11

the cumulative distribution function of the two distributions that needs to be compared.12

The Kolmogorov-Smirnov distance (KS distance) is a simple measure which is defined as the13

maximum value of the absolute difference between two cumulative distribution functions.14

Kolmogorov-Smirnov distance measures the largest absolute difference between two distri-15

bution functions F (t) and G(t) for varying t. In the similar setting, the Kolmogorov-Smirnov16

distance is defined by17

ρK(X, Y ) := ||F −G||∞ = sup
t⊂R
|P (X ≤ t)− P (Y ≤ t)| = sup

t
|F (t)−G(t)| (7)

The supremum is the least upper bound of a set. Given a sample of observations18

x = (x1, . . . , xn), the empirical distribution function Fn is given by the following expression19

Fn(t) =
1

n
#{xi|xi ≤ t} (8)

Where #{. . .} denotes the number of elements contained in the set {. . .} and Fn defines20

a discrete probability distribution function on the real line and for large values of n the21

empirical distribution converges to the theoretical one.22

In our study, we adopt the two-sample K-S test to measure the goodness-of-fit. A23

smaller K-S statistic value indicates a better goodness-of-fit, and in two-sample K-S test, the24

decision to reject the null hypothesis is based on comparing the p− value with significance25

level α. The comparison of K-S statistics and hypothesis test are illustrated in Table 1, the26

null hypothesis is that two sample of data are generated from the same distribution and the27

significant confidence is 95%.28

After both nonparametric model and parametric model were employed for each data29

set, their overall performance was examined and evaluated. The comparisons were illustrated30

in Table 2. The hypothesis test is conducted at 95% significant confidence. From the table,31

we noted that nonparametric model performs better than the parametric model in most of32

scenarios. This indicate that nonparametric method is better in describing headway model.33
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TABLE 2 Statistical test results comparison between Nonparametric model and
Parametric model

Nonparametric model Parametric model
with Gaussian Kernel function Lognormal distribution

Period K-S statistic Hypothesis test K-S statistic Hypothesis test
Car-Car Morning 0.0714 not reject 0.1327 not reject

Off-noon 0.0166 not reject 0.2500 reject
Afternoon 0.0400 not reject 0.2533 reject
Evening 0.0667 not reject 0.1704 reject

Car-Van Morning 0.1695 not reject 0.2881 reject
Off-noon 0.1029 not reject 0.2647 reject
Afternoon 0.0571 not reject 0.1857 not reject
Evening 0.0370 not reject 0.1296 not reject

Car-Truck Morning 0.0872 not reject 0.2081 reject
Off-noon 0.1412 not reject 0.3058 reject
Afternoon 0.0667 not reject 0.1867 not reject
Evening 0.2916 reject 0.2311 reject

Van-Car Morning 0.0684 not reject 0.1453 not reject
Off-noon 0.0400 not reject 0.2400 reject
Afternoon 0.0634 not reject 0.1111 not reject
Evening 0.0640 not reject 0.1520 reject

Van-Van Morning 0.1557 not reject 0.2131 reject
Off-noon 0.1363 not reject 0.2727 reject
Afternoon 0.0746 not reject 0.1493 not reject
Evening 0.0593 not reject 0.0847 not reject

Van-Truck Morning 0.0658 not reject 0.1579 not reject
Off-noon 0.0769 not reject 0.2615 reject
Afternoon 0.0400 not reject 0.1200 not reject
Evening 0.0580 not reject 0.1449 not reject

Truck-Car Morning 0.1240 not reject 0.2479 reject
Off-noon 0.0340 not reject 0.2203 not reject
Afternoon 0.0469 not reject 0.1406 not reject
Evening 0.0579 not reject 0.2479 reject

Truck-Van Morning 0.0602 not reject 0.1325 not reject
Off-noon 0.0833 not reject 0.2167 not reject
Afternoon 0.1231 not reject 0.1538 not reject
Evening 0.0661 not reject 0.0826 not reject

Truck-Truck Morning 0.0588 not reject 0.1029 not reject
Off-noon 0.0656 not reject 0.2459 reject
Afternoon 0.0465 not reject 0.1163 not reject
Evening 0.1212 not reject 0.1818 reject
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FIGURE 2 Kolmogorov-Smirnov Distance

For example, for Car-Car type, during the morning period, the K-S test statistic of Gaussian1

kernel-based model is 0.0714, and the corresponding value of lognormal distribution model2

is 0.1327. Although both model do not reject the null hypothesis test, that headway data3

follow the proposed model, but the K-S test statistic value of Gaussian kernel model is smaller4

than lognormal distribution model. Under some circumstance, nonparametric method with5

Gaussian kernel-based model performs much better than the parametric model, as in Van-Car6

type, off-noon period, the hypothesis that headway data follow Gaussian kernel model was7

not rejected while the hypothesis that headway data follow lognormal model was rejected.8

However, both model cannot provide satisfactory goodness-of-fit for the headway of Car-9

Truck type in the evening period, both reject the null hypothesis at α = 0.05. Also noticed10

that most of traffic flow types in off-noon period reject the null hypothesis under parametric11

model condition except Truck-Car and Truck-Van type, while nonparametric model didn’t12

reject. From the whole test results, we can confidently conclude that nonparametric model13

with Gaussian kernel based method is better than the studied parametric model.14

6 Results Analysis15

The fundamental statistical characteristics of headway data collected for this study are shown16

in Table 3.17

Some rules could be concluded from the table below. For example, in the morning18

period, the means of headways are all 7 around and standard deviation are 9 and 10 around.19

The means of headways are 5 around and standard deviation are 6 around in off-noon and20

afternoon period. The means and standard deviation of handways are all above 10. The21

distinctions of the data demonstrate the specification of vehicle types are necessary and22
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TABLE 3 Fundamental statistical analysis of collected workzone headway data
Means of Standard Minimum Maximum
headways deviation value value

Period Sample size (second) (second) (second) (second)
Car-Car Morning 9285 7.19 10.19 196 0

Off-noon 23849 5.27 6.10 60 0
Afternoon 14044 5.02 6.15 75 0
Evening 1212 14.58 18.86 264 0

Car-Van Morning 3477 7.41 9.46 118 0
Off-noon 8976 5.58 6.30 68 0
Afternoon 4567 5.24 6.08 70 0
Evening 1497 11.34 13.24 108 0

Car-Truck Morning 2459 7.76 9.65 149 0
Off-noon 6469 6.24 6.53 85 0
Afternoon 3023 6.31 7.20 75 0
Evening 1212 14.58 18.86 264 0

Van-Car Morning 3503 7.61 9.79 117 0
Off-noon 8867 5.49 6.31 75 0
Afternoon 4602 5,31 6.43 63 0
Evening 1484 12.23 14.85 125 0

Van-Van Morning 1708 7.15 9.41 122 0
Off-noon 4494 5.32 5.99 66 0
Afternoon 2061 5.17 6.08 67 0
Evening 623 11.81 15.13 118 0

Van-Truck Morning 1128 7.41 8.90 76 0
Off-noon 3121 6.00 6.26 65 0
Afternoon 1191 6.08 6.53 50 0
Evening 433 13.85 13.98 69 0

Truck-Car Morning 2406 7.51 9.89 121 0
Off-noon 6505 5.62 6.34 59 0
Afternoon 2958 5.51 6.46 64 0
Evening 1200 13.88 16.16 121 0

Truck-Van Morning 1113 7.35 9.15 83 0
Off-noon 2933 5.62 5.94 60 0
Afternoon 1201 5.25 5.83 65 0
Evening 416 14.71 17.74 121 0

Truck-Truck Morning 866 7.49 8.74 68 0
Off-noon 2532 5.99 6.35 61 0
Afternoon 951 5.75 6.44 43 0
Evening 590 13.43 17.08 165 0
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correct.1

We further present the visual comparisons of the two methods to provide a direct2

reflection on the two methods. The relative error in the following figures are calculated by3

relative error =
model generated data− observed data

observed data
(9)

6.1 Car-Car Headway Distribution4

Figure 3 show visualized performance comparisons between the nonparametric method and5

parametric method using the headway data collected from work zone during evening period.6

Figure 3 presents the relative error of this two methods. The curves of both cumulative and7

probability density function directly reflect that nonparametric method is better than para-8

metric method in approximating the observed headway data. From the K-S test nonpara-9

metric model did not reject null hypothesis, while parametric model reject null hypothesis.10

Visual performance of the curves confirms the conclusion drawn form statistical test.

FIGURE 3 Probability Density Functions and Cumulative Density Functions
of the Lognormal Distribution and the Nonparametric Model with Gaussian
Kernels Fitted to headway Data of Car-Car type in evening period

11

6.2 Car-Van Headway Distribution12

Figure 5 show visualized performance comparisons between the nonparametric method and13

parametric method using the headway data collected from work zone during morning peak14

period. Figure 6 presents the relative error of this two methods. The curve also proved15

that nonparametric method is better. The relative error of nonparametric method in the16

beginning is small and steady while parametric method is large and fluctuate a little.17

6.3 Car-Truck Headway Distribution18

Figure 7 show visualized performance comparisons and figure 9 presents the relative error.19

As showed in the figure 7, in the PDF approximation, nonparametric method fit the data20
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FIGURE 4 Relative Error of the Lognormal Distribution and the Nonparametric
Model with Gaussian Kernels Fitted to headway Data of Car-Car type in evening
period

FIGURE 5 Probability Density Functions and Cumulative Density Functions
of the Lognormal Distribution and the Nonparametric Model with Gaussian
Kernels Fitted to headway Data of Car-Van type in morning peak period
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FIGURE 6 Relative Error of the Lognormal Distribution and the Nonparamet-
ric Model with Gaussian Kernels Fitted to headway Data of Car-Van type in
morning peak period

well but cannot get to a high point, lognormal method depicts the data trend well but cannot1

fit the data accurately. Figure 9 shows the relative error of both methods would fluctuate in2

the beginning, but tend to steady and small afterwards.3

6.4 Van-Van Headway Distribution4

Additionally, we further investigate the Van-Van type flow in the afternoon peak to verify5

the transferability of the nonparametric method with gaussian kernel function. Figure 96

showed the experimental results. The visual comparisons support the conclusion that over-7

all goodness-of-fit for the nonparametric model with gaussian kernel function is acceptable8

for different headway samples. And the relative error provide the numerical evidence that9

gaussian kernel model is better than parametric model. This implies that proposed kernel10

model can be conducted to model headway on different time periods and flow types.11

6.5 Van-Truck Headway Distribution12

Following are experimental figures of two more flow types in different time periods. All13

figures shows a consist support to the nonparametric model.14
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FIGURE 7 Probability Density Functions and Cumulative Density Functions
of the Lognormal Distribution and the Nonparametric Model with Gaussian
Kernels Fitted to headway Data of Car-Truck type in off noon period

FIGURE 8 Relative Error of the Lognormal Distribution and the Nonparametric
Model with Gaussian Kernels Fitted to headway Data of Car-Truck type in off
noon period
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FIGURE 9 Probability Density Functions and Cumulative Density Functions
of the Lognormal Distribution and the Nonparametric Model with Gaussian
Kernels Fitted to headway Data of Van-Van type in afternoon peak period

FIGURE 10 Relative Error of the Lognormal Distribution and the Nonparamet-
ric Model with Gaussian Kernels Fitted to headway Data of Van-Van type in
afternoon peak period



S. Dong, H. Wang and D. Hurwitz 18

FIGURE 11 Probability Density Functions and Cumulative Density Functions
of the Lognormal Distribution and the Nonparametric Model with Gaussian
Kernels Fitted to headway Data of Van-Truck type in morning peak period

FIGURE 12 Relative Error of the Lognormal Distribution and the Nonparamet-
ric Model with Gaussian Kernels Fitted to headway Data of Van-Truck type in
morning peak period
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FIGURE 13 Probability Density Functions and Cumulative Density Functions
of the Lognormal Distribution and the Nonparametric Model with Gaussian
Kernels Fitted to headway Data of Van-Car type in off noon period

FIGURE 14 Relative Error of the Lognormal Distribution and the Nonparamet-
ric Model with Gaussian Kernels Fitted to headway Data of Van-Car type in off
noon period
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6.6 Van-Car Headway Distribution1

Noted from the above figures, same with the conclusion, studied nonparametric model per-2

forms better than compared parametric model. as it shows in the relative error figure, big3

error lies in the lognormal distribution’s CDF curve’s beginning, which maybe the reason4

why most of null hypothesis were rejected in off-noon period under parametric model.5

7 Discussion6

In this paper, we employ nonparametric model with Gaussian kernel-based method to model7

the vehicle type-specific headway distribution in the work zone. Work zone is important8

in our daily life since it would significantly effect the traffic flow, research on this topic9

would accelerate the improvement of traffic control. As to the vehicle type-specific headway10

research, much research were conducted on this but only four types: Car-Car, Car-Truck,11

Truck-Car, Truck-Truck. We adopt the FHWA Vehicle Classification scheme, add Van into12

the vehicle type. From psychological perspective, drivers prefer to keep a large distance if13

there are a large vehicle ahead. Since the length of the Truck and Car contains a large14

difference, add Van into the vehicle type would make the model more reasonable. And the15

statistical and visual test shows nonparametric model with Gaussian kernel-based method is16

better than parametric model with lognormal distribution which performs best for the Car-17

Car and Car-Truck type[11], which support our measures on the vehicle type specification.18

8 Conclusion19

Headway is a fundamental concept in traffic flow theory and simulation research. Most20

researches were conducted based on the parametric method. But the parametric model con-21

tains so many underlying hypothesis that cannot fit to every scenario. Hence, the traditional22

methods could not provide a good fit to the headway. This paper employ the nonparametric23

model with Gaussian kernel function, which requires few hypothesis and could handle com-24

plicated interaction among vehicles, represent headway characteristics without any artificial25

assumptions.26

A case study on I-91 in Massachusetts was conducted in this paper. Based on the27

collected data in the work zone, we conducted a K-S test to examine the accuracy of the28

method in approximating the empirical data. The K-S test indicates that nonparametric29

model with Gaussian kernel performs better than the parametric model with lognormal30

distribution. With only one case the nonparametric model reject the null hypothesis, the31

parametric model reject the null hypothesis often. Later the visualized performances were32

presented. All the PDF and CDF figures shows nonparametric model is better in fitting the33

data than the parametric model do, and relative error curve finds the reason why parametric34

model often reject null hypothesis is that the relative error is large in the beginning. Our35

research provide help information in modeling the headway.36

Although the tests and figures indicate a good capability in modeling headway dis-37

tribution, but the duration of the data is not long, a long-term headway investigation would38

be benefit to the traffic flow research. And this paper utilized the nonparametric model39
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with Gaussian kernel, other forms of kernel function could be investigated to examine if they1

would have a better performance.2



S. Dong, H. Wang and D. Hurwitz 22

References1

[1] R. Pueboobpaphan, D. Park, Y. Kim, and S. Choo. Time headway distribution of proble2

vehicles on single and multiple lane highways. KSCE Journal of Civil Engineering, 17(4):3

824-836, 2013.4

[2] Zwahlen H T, Oner E, Suravaram K R. Approximated headway distributions of free-5

flowing traffic on Ohio freeways for work zone traffic simulations[J]. Transportation6

Research Record: Journal of the Transportation Research Board, 2007, 1999(1): 131-7

140.8

[3] Riccardo R, Massimiliano G. An empirical analysis of vehicle time headways on rural9

two-lane two-way roads[J]. Procedia-Social and Behavioral Sciences, 2012, 54: 865-874.10

[4] Yin, S., Li, Z., Zhang, Y., Yao, D., Su, Y., Li, L. Headway distribution modeling11

with regard to traffic status In Intelligent Vehicles Symposium, IEEE,2009 IEEE. pp.12

1057-1062.13

[5] Serge P. Hoogendoorn, Hein Botma. Modeling and Estimation of Headway Distribu-14

tions. transportation research record 1591, Paper No. 970476.15

[6] Chen X, Li L, Zhang Y. A Markov model for headway/spacing distribution of road16

traffic[J]. Intelligent Transportation Systems, IEEE Transactions, 2010, 11(4): 773-785.17

[7] Zhang G, Wang Y, Wei H, et al. Examining headway distribution models with urban18

freeway loop event data[J]. Transportation Research Record: Journal of the Transporta-19

tion Research Board, 2007, 1999(1): 141-149.20

[8] Ye F, Zhang Y. Vehicle type-specific headway analysis using freeway traffic data[J].21

Transportation Research Record: Journal of the Transportation Research Board, 2009,22

2124(1): 222-230.23

[9] Jin X, Zhang Y, Wang F, et al. Departure headways at signalized intersections: A24

log-normal distribution model approach[J]. Transportation research part C: emerging25

technologies, 2009, 17(3): 318-327.26

[10] Jang J, Park C, Kim B, et al. Modeling of time headway distribution on suburban27

arterial: Case study from South Korea[J]. Procedia-Social and Behavioral Sciences,28

2011, 16: 240-247.29

[11] Weng J, Meng Q, Fang Fwa T. Vehicle headway distribution in work zones[J]. Trans-30

portmetrica A: Transport Science, 2013 (ahead-of-print): 1-19.31

[12] Zhang Guohui, Wang Yinhai. A Gaussian Kernel-Based Approach for Modeling Vehicle32

Headway Distributions[J]. transportation science, 2013, articles in adcance.33

[13] Cowan R J. Useful headway models[J]. Transportation Research, 1975, 9(6): 371-375.34

[14] Sun D, Benekohal R F. Analysis of work zone gaps and rear-end collision probability[J].35

Journal of Transportation and Statistics, 2005, 8(2): 71.36



S. Dong, H. Wang and D. Hurwitz 23

[15] Greenberg I. The log normal distribution of headways[J]. Australian Road Research,1

1966, 2(7).2

[16] Griffiths J D, Hunt J G. Vehicle headways in urban areas[J]. Traffic Engineering and3

Control, 1991, 32(10).4

[17] Johnson N L. Systems of frequency curves generated by methods of translation[J].5

Biometrika, 1949, 36(1/2): 149-176.6

[18] Branston D. Models of single lane time headway distributions[J]. Transportation Sci-7

ence, 1976, 10(2): 125-148.8

[19] Al-Ghamdi A S. Analysis of time headways on urban roads: Case study from Riyadh[J].9

Journal of transportation engineering, 2001, 127(4): 289-294.10


	Introduction
	Background
	Objective of Paper
	Paper organization

	Literature Review
	Single Distribution Models
	Mixed Distribution Models
	Vehicle-type Specific Headway Distribution
	Parametric vs. Nonparametric

	Theory/Methodology
	Nonparametric Model
	Parametric Models

	Experimental section
	Study Area Description
	Data Description
	Experiment Design

	Statistical Analysis: Probability Metric
	One-sample K-S Test
	Two-sample K-S Test

	Results Analysis
	Car-Car Headway Distribution
	Car-Van Headway Distribution
	Car-Truck Headway Distribution
	Van-Van Headway Distribution
	Van-Truck Headway Distribution
	Van-Car Headway Distribution

	Discussion
	Conclusion 

