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A B S T R A C T

Sight distance analyses require careful and detailed field measurements to facilitate proper en-
gineering decision making regarding the removal of obstructions, establishment of regulatory
and advisory speed limits, and the location of new access points, among numerous other pur-
poses. However, conventional field measurements for these analyses present safety concerns
because they require personnel to be in or adjacent to traffic lanes. They can also be time con-
suming, costly, and labor intensive. Furthermore, the predominantly two-dimensional (2D)
methods involve simplifying assumptions such as a “standard” vehicle heights and lengths
without considering the wide range of vehicles and drivers present on the road. Recently, many
transportation agencies worldwide have begun to acquire mobile lidar data to map their roadway
assets. These data provide a rich three-dimensional (3D) environment that enables one to vir-
tually visit a site at any frequency and efficiently evaluate sight distances from the safety of the
office. This study investigates advanced safety analysis methodologies for drivers’ sight distance
based on high resolution lidar data. The developed simulation method enables users to virtually
evaluate available sight distances in a 3D context considering a variety of objects, vehicle types,
and multi-modal forms of transportation (e.g., bicycle, pedestrian). The feasibility of this tech-
nique was analyzed with a case study at an intersection located in Corvallis, Oregon, USA. The
experimental results demonstrated the ability of the proposed methodology to capture sig-
nificantly more detail on visibility constraints when compared with conventional measurements
as well as provide more flexibility in the analysis.

1. Introduction

Sight Distance (SD) is the length of road visible to a road user measured from any point along the traveled way. A key component
in the safe design, operation, and maintenance of highways is the provision of adequate SD (AASHTO, 2011; Fambro et al., 1997).
Two categories of SD are Stopping Sight Distance (SSD) and Intersection Sight Distance (ISD). SSD is defined as the sum of the
distance traversed by the vehicle from the instant the driver detects an object obstructing the forward progressing of the vehicle on
the current path necessitating the driver to stop to the instant the brakes are applied (brake reaction distance) and the distance
needed to stop the vehicle once the brakes have been applied (braking distance). In addition to SSD, SD must also be considered at
intersections (commonly termed ISD) to provide drivers of stopped vehicles an adequate view of the intersecting highway to allow
them to cross or enter the intersecting highway (AASHTO, 2011).

SD analyses require careful and detailed field measurements to facilitate proper engineering decision making regarding the
removal of obstructions, establishment of regulatory and advisory speed limits, and the location of new access points, among
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numerous other examples. Transportation facilities should be designed such that a driver has sufficient visibility to avoid collision
with an object obstructing the traveled way. SD measurements and calculations are based on driver characteristics, vehicle types,
road grade, horizontal and vertical curves in road, road conditions (e.g., wet surface), and the type of maneuver that the driver will
perform.

Limited visibility is a principal cause of crashes in transportation corridors. Investigation of these cases showed that specific
preventive safety practices could reduce the number of these fatalities. One solution is to identify obstacles and hazardous road or
construction work spaces, which will allow for the selection of proper strategies such as removing obstructions, implementing safety
warning signs, and optimizing blind spaces by alternating the road or construction site features and equipment locations.

Conventional field measurements of SD present safety concerns because they require personnel to be in or adjacent to active
traffic lanes (e.g., McKinley, 2014). These studies are generally time consuming, costly, and labor intensive. Further, the methods that
are currently used are based on 2D theoretical equations (AASHTO, 2011), which require simplifying assumptions such as a
“standard” vehicle (height and length) without considering the wide range of vehicles present on the road. Another limitation in
conventional SD analyses is that only static objects and vehicles are considered. This method does not enable one to model the
dynamic motion of both vehicles and objects that occurs in the real world. They do not also consider multi-modal forms of trans-
portation such as bicycles.

Lidar is a recent technology that can rapidly generate survey quality, 3D data of a scene, which can be utilized to analyze visibility
within a space (e.g., Batchelor, 2016). A key benefit to lidar technology is the ability to utilize the same data source to support
multiple applications including asset management, safety analyses, construction, planning, and maintenance. Lidar data provide a 3D
environment that enables one to frequently visit a site virtually and obtain measurements from the safety of the office efficiently.

Recently, many transportation agencies worldwide have begun to acquire Mobile Lidar data for their highways (Olsen, 2013),
which has a great potential for supporting a wide range of applications, such as condition evaluation of traffic signs and road
markings (Ai and Tsai, 2016; Soilán et al., 2017), assessment of highway alignment (Marinelli et al., 2017), and simulation of vehicle
dynamics (Brown and Brennan, 2015). Recently, Oregon DOT (ODOT) has completed mobile lidar surveys of all state owned and
maintained highways and updates high priority areas annually (Mallela et al., submitted for publication). Among other purposes,
ODOT utilized this data to manually extract measurements to perform virtual passing SD analyses of passing lanes in rural highways
where speed limit increases were introduced. The efficiency of this approach resulted in $250,000 (US) savings compared to con-
ventional technique.

This research explores the feasibility, benefits, and challenges of a 3D safety analysis for sight distances based on lidar data.
Specifically, the following objectives were accomplished:

• Developed a systematic framework to utilize 3D laser scanning data to evaluate sight distances,

• Compared the framework to conventional techniques for validation,

• Evaluated visibility changes during vehicle movements such as turning,

• Considered differences in visibility based on different vehicles and multi-modal forms of transportation, and

• Provided 3D viewsheds that can help agencies manage SD obstructions.

The remainder of this paper is organized as follows. Section 2 reviews the latest developments in SD analysis using GIS, lidar and
other 2.5D technologies that cannot account for the objects with the same horizontal locations but different elevations. Section 3
outlines the procedure of the proposed methodology in detail. Section 4 presents the description of the study site and point-cloud data
collected for an intersection. Section 5 provides the test results of the proposed methodology with several visibility constraints.
Finally, Section 6 identifies the potential utility of the proposed methodology and upcoming work.

2. Related works

Initial efforts of using geospatial data for SD analysis were related to the design phase of roads (Hassan et al., 1996; Ismail and
Sayed, 2007; Jha et al., 2011; Jha and Karri, 2009). These methods used design alignments and terrain topographic information to
simulate the road geometry and conduct SD calculations. However, a major limitation arises since they only consider the road
geometry and ignore the influence of other effective objects such as trees, buildings, signs, etc. Moreover, these methods simplify the
road geometry (e.g. constant road grade and cross slope) with assumptions.

Recent developments in Geographic Information Systems (GIS) and Digital Elevation Modeling (DEM) provided efficient tools that
can be used for SD analysis of existing roads. GIS enables one to conduct line of sight analysis that is in accordance with the available
GIS terrain and surface model and combine the result of such analysis with other sources of information such as crash statistics and
speed limits for further evaluations. Table 1 summarizes studies that have performed geospatial visibility analysis for roads and
highways.

The ArcGIS Line of Sight (LOS) and viewshed analysis tools have been used in some studies in Table 1 to determine Available
Sight Distance (ASD) on roads (Castro et al., 2014, 2017; Khattak and Shamayleh, 2005) and intersections (Khattak et al., 2003; Tsai
et al., 2011). Two main methods were reported. In the first method, which is often used for intersection SD analysis, a viewshed for a
driver is first determined based on assumptions such as vision range, angle, and obstacle locations. Then, the intersection area
included in the viewshed polygon is determined and the length of ASD is extracted. In the second method, which is typically used for
road SD analysis, path points with equal distances are generated on a road trajectory polyline. Then, the GIS LOS tool is used to
determine the farthest seeable point for each of the path points to generate the viewshed.
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The quality of the digital model used to represent the terrain and road objects’ geometry directly affect the quality of SD analysis.
Two types of digital models used are Digital Elevation Models (DEMs, sometimes referred to as digital terrain models, DTMs) and
Digital Surface Models (DSMs). DEMs represent the bare ground surface. However, DSMs are more beneficial for SD analysis because
they include other on the ground objects such as trees, buildings, walls, and traffic signs that would generate obstructions.

Note that the DSMs in most studies reported in Table 1 do not fully represent the geometry of 3D objects, which can adversely
influence the SD analyses by not accounting for visible space underneath some objects such as tree crowns, building overhangs, signs,
power lines, and tunnels located above the road surfaces. DSMs can be represented as a Triangulated Irregular Network (TIN), which
are generated through a Delaunay triangulation. For a given set of points (e.g., a lidar point cloud), Delaunay triangulation is an
aggregate of connected but non-overlapping triangles such that the circumcircle of each triangle has no other point in its interior
(Delaunay, 1934; Tsai, 1993). In this technique, only the horizontal projection of points is used to form non-overlapping triangles.
Point elevations are only considered after the triangulation is generated. Unfortunately, this technique does not fully support a 3D
representation of surfaces because it generates only non-overlapping surfaces when projected to 2D. Therefore, the resulting DSM
cannot include surfaces with the same horizontal locations but different elevations. For this reason, sometimes the method is referred
to as 2.5D instead of 3D (De Santos-Berbel et al., 2014).

In the authors’ previous work (Olsen et al., 2015), an algorithm was developed to automatically determine available SD at
intersections using lidar point cloud data. In this technique, the 3D space is divided into small, cubic volume pixels called voxels.
These 3D voxel-based structure is used to represent objects captured within the lidar data. This methodology resolves the “2.5D vs
3D” issue mentioned in the previous paragraph. The driver’s lines of sight are also generated and used to determine areas visible to
the driver. Finally, the GIS binary raster map identifying locales as visible or not is generated.

3. Methodology

In this work, a novel method is proposed for effective 3D sight distance analysis using point-cloud data as schematized in Fig. 1.
First, the proposed methodology separates the ground points using a histogram method. The mean elevation of the ground points is
calculated and added to the user-defined driver’s height above the ground level to determine the appropriate elevation for the
analysis. Then, the algorithm organizes the entire point-cloud onto an x-y plane to generate a grid representation of the road and
surrounding objects. A line-of-sight analysis is performed on the grids to efficiently detect the object points in a driver’s field of view,
which are then evaluated in 3D space to determine where the driver’s visibility is blocked for generation of a driver viewshed map.
Finally, the viewshed maps with several visibility constraints are generated and compared with the conventional field measurements
through both qualitative and quantitative evaluation. The method was designed to be flexible such that one can vary driver’s position,
height, and viewing angles as well as the desired level of detail of the results. Each step will be discussed in more detail in this section.

Table 1
Summary of related studies performing geospatial visibility analyses (modified from Olsen et al., 2015).

Reference Contribution GIS function Model used Lidar used

Khattak et al. (2003) GIS LOS method to detect intersection SD obstructions LOS First and last
return DTM

ALS

Khattak and Shamayleh (2005) GIS viewshed method to detect a road SD obstructions Viewshed DSM ALS
Tsai et al. (2011) GIS POS method to detect intersection SD obstructions and quantify

the severity
Viewshed DSM ALS

Castro et al. (2011) GIS viewshed method to calculate ASD on a highway Viewshed DTM N/A
Castro et al. (2014) GIS POS loops to calculate ASD on a highway and detect diving

locations
LOS loop DTM N/A

De Santos-Berbel et al. (2014)–Castro
et al. (2017)

Compare the influence of DTM and DSM made from ALS and MLS
data on method presented in Castro et al. (2014)

LOS loop DTM, DSM ALS, MLS

Olsen et al. (2015) 3D voxel-based method to calculate ASD at intersections Viewshed Point cloud TLS

Fig. 1. Key steps in the Algorithm workflow.
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3.1. Ground elevation estimation

The initial step of the algorithm is to separate the ground points (potential obstructions) from a registered and cleaned point
cloud. First, a histogram along the z-axis (elevation) is computed (Fig. 2a) with bin sizes of 0.4m (Jung et al., 2017), ranging from the
minimum to the maximum elevation. Next, the peak indicates the presence of the ground surface, which normally contains the largest
number of points based on the scanning geometry and projected area occupied by the ground relative to other objects. Fig. 2b
illustrates the separation of the ground and other points where points within the bin containing the peak and the bins lower than the
peak are classified as ground. The mean elevation of the ground points is computed and added to the user-defined driver’s height
above the ground level to determine the appropriate elevation for the analysis. This method assumes that the ground surface is mostly
constant in elevation (planar) and contains the largest number of points. This simplified method provides significant computational
efficiency for most intersections; however, for cases in which the histogram method is not appropriate, e.g. intersections located in
hilly terrain, a more rigorous ground filtering technique would be a viable solution (e.g., Che and Olsen, 2017) and will be taken into
consideration in future work.

3.2. Object extraction

In this phase, the driver’s lines of sight are generated and used to extract the objects visible to the driver. First, the whole point
cloud is organized onto the x-y plane to create a grid representation: if a grid cell contains at least one projected point, it is re-
presented as 1 (occupied grid); otherwise, as 0 (unoccupied grid) (Jung et al., 2016). A user-defined grid cell size (g) is used here to
divide the space into small cells. Finer grids generally result in more realistic representation of objects and thus a more accurate
driver viewshed since they can account for smaller objects. However, selecting a small grid cell size may cause higher computational
costs, i.e., processing time. The relationship between the grid cell size and the processing time will be explored in Section 5.3.

Fig. 3 illustrates a driver location, line of sight, and object points on the grid representation. Prior to the viewshed analysis, users
need to define the driver’s horizontal viewing angle to narrow down the effective visible area when looking straight ahead. (Section
5.2.2 evaluates the selection of this horizontal viewing angle in more detail). The grid cells on the outer edge of the grid map within
the driver’s horizontal viewing angle are initially considered as the ends of the driver’s view point. Subsequently, the line of sight
starts from the driver location and extends as a ray to each outer cell. Grid cells on the line of sight are then recognized using the
Bresenham’s algorithm (Joy, 1999), which identifies cells within a grid that formulate an approximation of a straight line. The indices
of these designated grid cells for the line are stored and used to retrieve the points within them. The algorithm visits all the driver’s
view points within the pre-defined horizontal viewing angle (e.g., 120° in Fig. 3), and non-visible space blocked by obstructions are
investigated. The details of the detection of obstruction in the line of sight will be intensively discussed in the following section.

3.3. Detection of obstruction

Considering the 3D object points on the line-of-sight path, non-visible space blocked by obstructions and visible space can be
separated. Fig. 4a describes how to determine whether an object constitutes as a sight obstruction in a profile view. The vertical
distance (Δz) between each object point and the line of sight is calculated as

= − ° −z h θ zΔ z |{ Δ tan( )} |d o (1)

⩽ gif Δ z /2, the view point is obstructed

Fig. 2. Ground height estimation using a histogram method: (a) histogram representing number of points and (b) separated ground points from point cloud.
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where zd is the driver height, hΔ is the horizontal distance between the driver location and the object point, and °θ is the driver’s
vertical viewing angle (in degrees) to the end of view point. Since detection of obstruction is conducted using z-values without grid
discretization, half the user-defined grid cell size (g/2) is assumed and used as a criterion: if the Δz is equal to or less than g/2, the
object point is considered an obstruction that would block the driver’s view of the road. This process operates recursively until all the
object points on the line-of-sight path are evaluated. Fig. 4b shows an example of obstruction detection, where the driver’s line of
sight passing below the tree canopy is finally blocked by another object. Subsequently, only the space closer than the obstruction

Fig. 3. Retrieval of object points using the line-of-sight analysis. Ground points are omitted for clarity.

Fig. 4. Concept of the detection of and obstruction in a line-of-sight path: (a) extracted object points in a line-of-sight path and (b) detection of obstruction.
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Fig. 5. Examples of changes in the viewshed resulting from different driver conditions. The green dot indicates driver’s location and red dots indicate the driver’s
viewshed: (a) eastbound approach; (b) northbound approach; (c) passenger car (1.067m); (d) heavy vehicle (2.316 m); (e) vertical viewing angle of −5°; (f) vertical
viewing angle of +5°; (g) horizontal viewing angle of 240°; (h) horizontal viewing angle of 120°; (i) grid cell size of 1 m; and (j) grid cell size of 0.1 m. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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nearest to the driver’s location is kept as a part of the driver’s viewshed.
The flexibility of the proposed simulation enables evaluation of the visibility of different driver positions (e.g., different lane or

motion), heights, vertical/horizontal viewing angles, and resolutions. Fig. 5 illustrates such examples in 3D views. Fig. 5a and b show
differences in visibility depending on where the car is located, Fig. 5c and d show differences in driver height, Fig. 5e and f alternate
the vertical viewing angle to show differences if the driver is looking down on the road or up at a traffic signal, Fig. 5g assumes the
driver is rotating their head, Fig. 5h models peripheral vision, and Fig. 5i and j consider the influence of the analysis resolution. This
versatility is of great advantage for effective evaluation of several different traffic motions. Another advantage is that one can
consider multi-modal forms of transportation such as pedestrians and bicyclists. A few common scenarios will be evaluated in the
Section 5 by varying the parameters representing the driver’s conditions.

3.4. Comparison with field measurements

A comparison of the algorithm-generated viewshed and the conventional field measurements is conducted to reveal how the
proposed methodology provides significantly more detail for the visible area. For that purpose, the sight triangles developed from the
field measurements are rasterized using the grid cell size defined in the previous rasterization phase. Subsequently, as shown in an
example of Fig. 6, the estimated driver’s 3D viewshed is projected on the visible scene determined by the field measurements to
compare the detail visibility. Further, for quantitative comparison, the degree of overlap between two visible areas is calculated,
pixel-by-pixel.

4. Case study

4.1. Description of the intersection

The signalized, four legged intersection of SW Jefferson Way and SW 9th Street (Fig. 7a) is located in Corvallis, Oregon. SW
Jefferson Way runs approximately east-west while SW 9th Street runs approximately north-south. Fig. 7b displays the geometry of the
intersection SW Jefferson Way. The northbound approach along SW 9th Street consists of a single shared left/through/right turn lane.

Fig. 6. Comparison of visible areas estimated by the field measurement and the proposed method.

Fig. 7. Intersection of SW Jefferson Way and SW 9th Street: (a) intersection image obtained from Google maps and (b) intersection geometry.
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The southbound approach along SW 9th Street consists of an exclusive right turn lane and a shared through/left turn lane, separated
by an exclusive marked bicycle lane. This intersection was selected for the case study due to the proximity and size of fixed objects
near the corners of the intersection that present intersection SD obstructions. Examples of obstructions at this site include vegetation,
both trees and shrubbery, utility poles and traffic signal cabinets, on-street parallel parked cars, and the placement of buildings.

4.2. Conventional field measurements

Table 2 provides the SD analysis summary for the study conducted at SW Jefferson Way and SW 9th Street. The required SSD and
ISD measurements are based on requirements provided by American Association State Highway and Transportation Officials
(AASHTO) for a design speed of 25 mph (AASHTO, 2011). The ISD for each approach is the smallest distance measured to the right
following AASHTO recommendations. The smallest measurement is used for the purpose of being conservative thereby promoting
intersection safety. Furthermore, AASHTO (2011) states “if the available ISD for an entering or crossing vehicle is at least equal to the
appropriate SSD for the major road, then drivers have sufficient SD to anticipate and avoid collisions”. This is the case for all ISD
measurements when compared to the required and calculated SSD at the case study intersection. However, this is not the case when
compared with the measured SSD. Based on the data collected, the intersection has sufficient SSD and ISD for nearly all approaches;
however, the eastbound approach does not provide adequate ISD and would require mitigation of the intersection obstructions to
meet the AASHTO requirements for ISD. Fig. 8a shows a typical setup during the field campaign and Fig. 8b shows an example of
resulting SD triangles overlain on aerial imagery.

4.3. Point cloud data collection

Lidar point cloud data for the intersection were acquired at the intersection from 12 independent setups strategically positioned
throughout the scene. Each scan captured a 360° panorama of the scene, with a sampling resolution of 0.05°. A Trimble R8 GNSS
Receiver was mounted to the top of the scanner to provide geodetic positioning. GNSS data were collected using RTK correctors from
the Oregon Real Time GNSS Network (ORGN), which is managed by Oregon DOT.

To register the several scans captured from different positions into a single point cloud, 6″ Black and White checkerboard pat-
terned targets were spread across the scene to serve as tie points. The center points of these targets were captured using a reflectorless
total station sighted on the center of each target. These target centers were then linked to ground control points by positioning a 360°
prism mounted on top of a rod placed on the ground control points. Geodetic coordinates for the ground control points were also
obtained using the ORGN. The registration process was completed in Leica Cyclone 9.0 software. In addition to utilizing the targets
for the registration, cloud to cloud surface matching techniques were utilized to help improve the fit between overlapping scans. The
registered point-cloud data was resampled to point spacing of 2 cm as well as edited to remove noise due to passing vehicles and

Table 2
SW Jefferson Way at SW 9th Street SD analysis summary.

Approach Stopping sight distance (ft) Intersection sight distance (ft)

Required* Calculated Measured Required* Calculated Measured

Northbound 155 151.86 279 275.6 275.63 294
Southbound 155 151.86 681 275.6 275.63 330
Eastbound 155 151.86 633 275.6 275.63 217
Westbound 155 151.86 681 275.6 275.63 459

* Based on a 25mph design speed (AASHTO, 2011).

Fig. 8. Southbound approach SSD triangles of intersection of SW Jefferson Way and SW 9th: (a) SSD study in progress and (b) SSD triangles overlain on Arcmap image.
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pedestrians since they do not represent static objects at the scene that should be considered in the site analysis. In total, the resulting
point cloud contained approximately 47.7 million scan points. Fig. 9a shows the entire point-cloud data colored by height variations
and Fig. 9b shows the intersection in close-up view.

5. Simulation and results

5.1. Comparison of simulation results with conventional measurements

The simulated driver’s viewsheds from the four different intersection approaches at SW Jefferson Way and SW 9th Street are
represented in Fig. 10. The simulated 3D viewsheds were projected in an x-y plane to compare their detail visibility with the 2D field
measurements as well as to calculate the overlap rate. For each approach, the driver’s horizontal and vertical viewing angles were
fixed with constant values of 180 and −1°, respectively. Additionally, the vehicle type was assumed to be a passenger car located in
the right lane. The proposed method provides significantly more detail than conventional measurements (Fig. 10) because the
conventional approach has been based on a relatively few discrete measurements without considering detailed objects in 3D. As a
result, the conventional analysis over predicted visible areas to the driver that an obstruction would block. In contrast, the proposed
simulation could incorporate a variety of objects to the virtual 3D scene and evaluate their impacts on available SD. Another

Fig. 9. Point cloud data obtained for the intersection (47.7 million points): (a) overview and (b) close-up view of intersection.
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limitation of the conventional analysis is that cones are commonly placed at the center or shoulder of the road to improve the safety
of technicians and minimize the impact on traffic. Hence, they are offset from the actual location of the driver, immediately in-
troducing a bias into the analysis. It is further shown that different approaches yield different overlap rates, ranging from 51.2 to
68.2%. The lowest overlap rate was found on the south approach due to the over-predicted visible area of the right triangle.

5.2. Investigation of potential scenarios

5.2.1. Impact of driver height
A key advantage of the proposed method is that it enables rapid simulation of multiple transportation user scenarios. Hence, the

designer can consider a wider range of possibilities as compared to the conventional method. One example is varying the driver
height, which can significantly influence the length of visible roadway. In this scenario, the impact of driver height was simulated by
increasing the driver height from 1.0m to 2.5m, with a constant interval of 0.5 m. The driver’s horizontal and vertical viewing angles
were fixed with 180 and −1°, respectively, and the driver’s location was assumed to be in the right lane of the southbound approach.
Visibility changes significantly depending on the driver height (Fig. 11). The maximum extent of the visible area and overlap rate
increased until the driver height reached 2.0 m, after which the overlap rate showed a sharp decrease at 2.5m. This likely occurred

Fig. 10. Comparison of visibility between algorithm-generated results and conventional field measurements in four different approaches at intersection: (a) north-
bound approach (overlap 61.6%); (b) eastbound approach (overlap 68.2%); (c) westbound approach (overlap 51.2%); and (d) southbound approach (overlap 51.7%).
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because the driver’s lines of sight were blocked by some tall artifacts or tree branches, which is not well reflected by conventional
field measurements.

5.2.2. Impact of horizontal viewing angle
The influence of visual attention on the driving task is significant, as it has been proposed that 90% of the driving task is visually

controlled (Hartman, 1970; Hills, 1980; Sivak, 1996). Recarte and Nunes (2000) found mean vertical visual fixation to be 1° below
the horizon with a± 1° standard deviation. Meanwhile, AASHTO (2010) found the horizontal viewing angle can vary depending on
driver’s awareness. It is therefore desirable to simulate the impact of different horizontal viewing angles on the visible area. In this
scenario, the vertical viewing angle was fixed with constant value of −1° and the vehicle type was assumed to be a passenger car in
the right lane of south approach. While looking straight ahead, objects within 180° of horizontal view can be seen (Fig. 12a), but the
information is not consciously processed by the driver. The useful field of horizontal view in which drivers are aware of visual
information ranges from 20 to 30°, which were simulated as shown in Fig. 12b and c, respectively. Compared with the full horizontal
view (180°), one can see that the visibility has been significantly reduced. Further, the low overlap rates (3.8 and 2.6%) indicate the
conventional method can be problematic for handling diverse conditions. Finally, objects can be seen in high resolution within 4° of
the horizontal view (Fig. 12d).

Fig. 11. Impact of driver height on visibility: (a) 1.0m (overlap 48.8%); (b) 1.5 m (overlap 64.3%); (c) 2.0m (overlap 70.1%); and (d) 2.5m (overlap 51.7%).
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5.2.3. Dynamic motion
The proposed method is also particularly useful in simulation of driver’s dynamic motion. Fig. 13 illustrates an example of a

passenger car performing a right turn from the right-turn lane of the southbound approach. The other driver’s horizontal and vertical
viewing angles were fixed at 180 and −1°, respectively. The dynamic motion was modeled as a simple circular curve and recorded
with the constant interval of 10° (Fig. 13a). The variations in driver’s visibility were obtained (Fig. 13b–f), which demonstrated the
great potential utility of the proposed simulation.

5.2.4. Transportation modes
In this phase, the visibility of different vehicle types and modes including bicyclists and pedestrians were simulated. For realistic

visualization, the generated viewsheds in grid format were converted to a polygon format and imported into commercial ArcGIS
software. This process was completed by exporting a point (centroid) for each grid cell that is visible and then converting those
combined points into a single polygon that bounds those points. Fig. 14 represents the viewsheds of different transportation modes
overlain on an orthoimage in ArcMap. The viewsheds of the passenger car and the heavy vehicle were simulated in the right-turn lane
of the southbound approach, while the bicyclist was simulated in the bike lane, and the pedestrian was simulated on the sidewalk. For
all modes, the horizontal and vertical viewing angles were assumed to be 180° and −1°, respectively.

Fig. 12. Impact of driver’s horizontal viewing angle on visibility: (a) 180° full horizontal view (overlap 51.7%); (b) 30° maximum useful field of view (overlap 3.8%);
(c) 20° minimum useful field of view (overlap 2.6%); and (d) 4° accurate vision (overlap 0.6%).
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Fig. 13. Variations in driver’s visibility in dynamic motion: (a) vehicle path; (b) 10°; (c) 30°; (d) 50°; (e) 70°; and (f) 90°.
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5.2.5. Application to authorities
Within sight triangles, any objects above the height of the adjacent roadway that has the potential to obstruct the driver’s view

should be removed or lowered (AASHTO, 2011). Fig. 15 shows a potential use of the generated 3D viewshed to detect the obstructions
within the sight triangles. In this example, the vehicle type was assumed to be a passenger car (1.067m) in the right lane of south
approach, and the driver’s horizontal and vertical viewing angles were fixed at 180 and−1°, respectively. The obstructions that block
the driver’s view (e.g., tree trunks and traffic signal poles), were detected by Eq. (1) and projected onto the x-y plane. Subsequently, all
of the points that fall within the same grid cells were highlighted in red, which could help maintenance personnel identify intersection
obstructions and make informed management decisions. These decisions could be as simple as removing minor vegetation or as
complex as intersection realignment depending on the severity of the obstructions. Further, the virtual environment allows one to
model potential maintenance procedures in the point cloud and evaluate the improvement on intersection visibility to determine an
optimal cost-benefit ratio. For example, one can remove portions of the point cloud corresponding to an obstructing tree, re-run the
analysis, and compare the new viewshed with the current conditions to evaluate whether the cost of removal produces a significant
gain in visibility. Then once the optimal maintenance procedure is determined, it can be completed by the maintenance crews.

Fig. 14. Variations in driver’s visibility according to different transportation modes. Bright regions indicate visible area: (a) passenger car (1.067m) (overlap 51.7%);
(b) bike (1.372m) (overlap 55.3%); (c) pedestrian (1.70m) (overlap 52.3%); and (d) heavy vehicle (2.316m) (overlap 59.1%).
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5.3. Impact of grid size on processing time

In this section, the impact of grid size on the runtime of the proposed methodology was compared with the authors’ previous
work, the voxel-based method (Olsen et al., 2015). Both algorithms were implemented in the Matlab environment, and simulated on
a computer with Intel® Xeon® processor (2.4 GHz, 24.0 GB of RAM). Note that the comparison was conducted using the reduced
number of scan points (approximately 1.2 million points) due to the excessive processing time of the voxel-based method on the
larger 47.7 million point dataset.

As anticipated, the test (Fig. 16) indicated that the runtime increases as finer grid sizes were used. Notably, the increase in the
runtime of the voxel-based method was very significant as the grid size decreased: it grew exponentially and jumped up to 6478.3 s
with the grid size of 0.2m. In contrast, the impact of grid size on the runtime of the proposed method was not as significant as the
voxel-based method; the runtime grew relatively slowly with decreasing the grid size and yielded only 180.7 s even with the grid size
of 0.1m. This is due to the fact that the voxel-based method is inefficient for sparse and unbalanced distribution of scan points by
assigning pointers to 3D voxels where no point exists, and thus it used more memory and time than was required (Han et al., 2012).
On the other hand, the improved query performance was achieved with the proposed method because the operations for finding scan
points and detecting obstructions were separated on the 2D grid space and the 1D vertical space, respectively. As the processing time
reduced, the angular resolution parameter of the voxel-based method, which was used to limit the search space for obstructions, is no
longer used in this method. As can be seen in Fig. 17, despite an overall improvement in processing speed, the proposed method
showed almost the same performance of viewshed estimation as that of the voxel-based method: the overlap rate was calculated to be
95.6%. The small difference was due mainly to the obstruction detection in a line-of-sight path: while the voxel-based method detects

Fig. 15. Intersection obstructions detected by generated 3D viewshed within the sight triangles.

Fig. 16. Comparison of processing time between the voxel-based and the proposed methods with a reduced data set (1.2million points).
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obstructions in a line of sight voxels, the proposed method detects obstructions by calculating the vertical distance between each
object point and the line-of-sight path.

With the grid cell size of 0.1 m, the proposed method resulted in reasonable runtime (approximately 3 h) using the 44.7 million
points obtained in the study site. A finer grid size could also be used, but the amount of accuracy improvement will be relatively
minor and likely not worth the significant increase the required algorithm runtime. Therefore, the grid cell size of 0.1m has been
used in the other steps of this research.

6. Conclusions

In this paper, a novel approach to perform sight distance analysis was developed using 3D lidar data, which improves upon the
existing 2.5D approaches. This algorithm simplifies the data into a grid form for efficiency but still preserves the 3D nature of the
scene. The approach also enables the user to evaluate visibility from a variety of perspectives throughout the scene. This flexibility
enables the algorithm to successfully evaluate SD constraints from a variety of vehicles, driver heights, viewing angles as well as
multi-modal forms of transportation. The algorithm can handle complex objects throughout the scene and showed several benefits
over conventional measurements. First, data can be collected safely from the side of the road or from a mobile platform (MLS) moving
with traffic. Second, more detail on the road and obstructions are collected and can be considered in the visibility analysis. Third, it
provides more flexibility in evaluating various transportation modes, including multi-modal transportation, which is becoming in-
creasingly important to reduce congestion in urban areas and promote public health and safety. Fourth, the conventional method
significantly overestimated the visible portion of the intersection, which can lead to unsafe intersections being considered safe but do
not provide adequate SD. Fifth, the algorithm-generated viewshed can be simply exported as polygons and used in GIS tools, which
enables users to extend the application of the simulation result and consider it in context with other important data in the safety
evaluation. Sixth, the viewshed enables maintenance personnel to easily identify intersection obstructions and evaluate alternatives
of improvements, thus aiding their decision making processes. Further, in comparison with a 3D voxel method, the proposed method
is significantly more computationally efficient and requires fewer parameters (height interval and grid size).

However, there are two challenges associated with the proposed methodology. Although the study intersection is an authentic
real-world example intersection, more complex intersections should be considered in future work; for example, the integration of
ground filtering into the proposed pipeline to enable the algorithm to work on intersections located in hilly terrain. For the ob-
struction detection on a line-of-sight path, a simplified approach using half the user-defined grid cell size was assumed and adopted as
a criterion. Nevertheless, more rigorous mathematical criteria accounting for the divergence of the view cone would be beneficial in
improving the proposed sight distance analysis, particularly at far distances.

In future work, the automated classification of detected obstructions (e.g., pole or tree) could enhance authorities’ decision
making since some objects may not be removable. Future work could also consider the 4D dynamic motions of the driver as well as
other objects in the scene to identify additional conflicts or perform more advanced statistical analysis. Such a capability will enable
design and maintenance engineers to consider the visibility of passing vehicles under various traffic conditions such as different
speeds, restricted SD due to oncoming or impeding vehicles, etc.

Fig. 17. Comparison of generated 3D viewshed between the voxel-based and the proposed methods with reduced data set (1.2 million points).
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