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Executive Summary 

 Driving Simulators are advanced tools that have been applied to the study of engineering, 

physiology, and medicine. Recently they have been used to advance the practice of 

transportation engineering, specifically signs, signals, pavement markings, and most powerfully 

to examine the safety and efficiency of alternative transportation solutions. These simulators are 

a powerful 3D, virtual environment enabling the study of how drivers respond to potential 

designs or policies. A key challenge is virtual environment that maintains high fidelity to the real 

world. 3D laser scanners, which use Light Detection and Ranging (LIDAR), are line-of-sight 

technology that emits laser pulses at defined, horizontal and vertical angular increments to 

produce a 3D point cloud, containing XYZ coordinates for objects that return a portion of the 

light pulse within range of the scanner. This detailed point cloud is a virtual world that can be 

explored and analyzed by a variety of people. Through the combination of these two 

technological systems, more authentic, virtual, built-environments can be used by transportation 

engineering professionals for the purpose of 3D design.  

The specific purpose of this research effort was to determine if dense 3-D point clouds 

could be rendered in the driving simulator. In order to interface between the laser scanner data 

and a high fidelity driving simulator one must perform three tasks: 

1. Export the point cloud from the scan software package into a data format that can be 

introduced into a driving simulator efficiently and without data loss  

2. Import the point cloud into the simulator’s scenario editing tool in a way that allows 

manipulation and scenario design 

3. Optimize the performance of the point cloud scenario in the driving simulator 



x 

These tasks were addressed by using a 3D laser scanner to collect a point cloud representation of 

the intersection of 14
th

 and Campus Way on the Oregon State University campus in Corvallis, 

Oregon. The following major findings were determined from the investigation: 

 VRML97 is the only common format that can be imported into RTI driving simulators 

that are exported from various 3D scanning software packages. Any other format must be 

converted into VRML97. 

 The color scale must be coded in floating point precision values from [0 1].  

 Creating a transformation node within the VRML file is an effective, and sometimes 

necessary, way to translate and rotate the point cloud model to reduce large coordiantes 

before importing into SimVista. 

 Alternatively, using scanner coordinate system brings point clouds near the origin in 

SimVista making further manipulation simpler. When using multiple scans a truncated 

state plane (or similar) coordinate system will allow for the easy manipulation of data 

while providing a common reference frame.  

 Per object, file sizes must be kept relatively small, requiring careful thought in 

processing.  

 Removing any extraneous data points from the model can help control total file size and 

still maintain high quality data. This can be accomplished by filtering points far from the 

scanner (by range) and areas of high point density close to the scanner (by minimum 

separation).  

 Splitting large files into several, smaller partitions that are easier for the simulator to 

process. Although each driving simulator’s computer system is unique, partitions smaller 

than 35MB work best with the OSU driving simulator. 
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Chapter 1 Introduction 

 The purpose of this project is to create accurate, high-resolution, three-dimensional (3D) 

models of real world sites using laser scanning point clouds that are compatible with a high 

fidelity driving simulator. The use of laser scanners to create point cloud models enables the 

rapid creation of extremely accurate digital 3D models of real world sites. If point cloud models 

can be imported into a high fidelity driving simulator efficiently, this would allow researchers 

and engineers to study potentially dangerous real world transportation facilities in a low risk 

simulation environment. The three main challenges associated with this task will be exporting 

the point cloud in a format that can be introduced into a driving simulator, importing the point 

cloud into the simulator’s scenario editing tool, and optimize the performance of a point cloud 

scenario in a driving simulator.  

Although some similarities exist between different driving simulators, there little 

interoperability and coordination in development between platforms. In particular, the diversity 

of software used to model driving simulator scenarios creates challenges unique to each platform 

rendering scenario sharing between platforms inefficient and impractical. For this reason the 

research team focused on developing a process to import point clouds models into a mid-range 

driving simulator located at the Oregon State University (OSU) Driving Simulation Laboratory, 

which runs the SimVista software from the vendor Realtime Technologies Incorporated (RTI). 

While the exact procedure and constraints will vary depending on the platform, it is likely that 

many challenges overcome in this study will exist with other platforms.  
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Chapter 2 Literature Review 

2.1 Driving Simulators 

There is a wide price spectrum of driving simulators, depending on their ability to 

recreate and interact with a virtual environment. On the low end, costing as little as $10,000, 

there are small desktop based simulators with video game like controls (Figure 2.1) (Fisher et al. 

2011, STSIM 2013). On the high end, there are facilities like Toyota’s $15 million driving 

simulator which has a 35 meter by 20 meter motion platform enabling motion in nine degrees of 

freedom (translation in the X, Y, & Z directions, yaw, pitch, & roll, and three vibration degrees 

of freedom (McNamara 2009, Fisher et al. 2011). Table 2.2 shows the Toyota driving simulator.  

The software that operates a driving simulator and is used to create scenarios is specific 

to each driving simulation platform. In the Handbook of Driving Simulation for Engineering, 

Medicine, and Psychology Fisher et al. (2011) present a comparison of four scenario authoring 

systems (Table 2.1). 

 

 

Figure 2.1 Desktop Simulator (from STISIM 2013) 
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Figure 2.2 Toyota Driving Simulator (from McNamara 2009) 

Table 2.1 Comparison of Four Scenario Authoring Systems (Adapted from Fisher et al. 2011) 

  STISIM Drive: SimVista: Hank: ISAT: 

Developer 
Systems Technology 

Inc. 

Realtime 

Technologies Inc.  

Hank Project, 

Dept. of Computer 

Science, The 

University of Iowa 

The University of 

Iowa, NADS 

Type 
Commercial, low 

cost, small scale 

Multi-purpose, 

commercial 

simulator 

In-house, small 

scale research 

simulator 

Large-scale 

research system; 

smaller systems 

running miniSim 

Web Site www.stisimdrive.com www.simcreator.com 

www.cs.uiowa.edu/
~hank 

www.nads-
sc.uiowa.edu 

Interface Text-based GUI Text-based GUI 

Object 

Placement 
By route On Map By address On Map 

Scene 

Integrated 

development; text-

based 

Integrated 

development: tile-

based 

Developed 

separately; text 

based "logical" 

scene + visual 

model 

Integrated 

development; tile 

based 

Ambient 

Traffic 

Created manually by 

individual vehicle 

events 

Automatically 

generated using 

"bubble-based" 

algorithm 

Generated by 

sources 

Generated by 

sources 

Critical 

Events 

Controlled by 

triggers built into 

individual events 

Controlled by 

special scenario 

objects - sensors 

Controlled by 

triggers built into 

other scenario 

objects 

Controlled by 

special scenario 

objects - triggers 

http://www.stisimdrive.com/
http://www.simcreator.com/
http://www.cs.uiowa.edu/~hank
http://www.cs.uiowa.edu/~hank
http://www.nads-sc.uiowa.edu/
http://www.nads-sc.uiowa.edu/
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2.2 The OSU Driving Simulator 

The OSU Driving Simulator (Figure 2.3) is a high-fidelity, motion-based simulator, 

consisting of a full 2009 Ford Fusion cab mounted above an electric pitch motion system with 

one degree of freedom capable of rotating ±4 degrees. The vehicle cab is mounted on the pitch 

motion system with the driver's eye-point located at the center of the viewing volume. The pitch 

motion system enables the accurate representation of acceleration or deceleration on tangent 

section of roadway (OSU 2011).  

 

 

Figure 2.3 Views of the OSU Driving Simulator from inside (left) and outside (right) the vehicle 

 

Three silicon-based liquid-crystal display (LCD) projectors with a resolution of 1,400 by 

1,050 pixels each are used to project a front view of 180 degrees by 40 degrees. These front 

screens measure 11 feet by 7.5 feet. A digital light-processing (DLP) projector is used to display 

a rear image for the driver’s center mirror. The two side mirrors have embedded LCDs. The 

refresh rate for the projected graphics is 60 hertz. Ambient sounds around the vehicle and 

internal sounds to the vehicle are modeled with a surround sound system.  
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The OSU Driving Simulator runs the simulation software SimCreator, also provided by 

vendor RTI. The computer hardware that the driving simulator operates on consists of a server 

integrating five computers to run the car interface and a sixth server for the bicycle interface (not 

used in this study). Of the computers for the car interface, one computer processes each of the 

visual channels center, rear, right, and left, and the fifth computer acts as the host, coordinating 

the others. Table 2.2 shows technical specifications for the OSU Driving Simulator server. 

 

Table 2.2 OSU Simulator Server Specifications 

 
OS: Processor: Cores: Speed: RAM: 

Center Windows XP Professional 

Service Pack 3 

Intel Core 2 

Quad Q6600 
4 

2.40 

GHz 
2 GB 

Rear Windows XP Professional 

Service Pack 3 

Intel Core 

Duo E6400 
2 

2.13 

GHz 
2 GB 

Left Windows XP Professional 

Service Pack 3 

Intel Core 

Duo E6400 
2 

2.13 

GHz 
2 GB 

Right Windows XP Professional 

Service Pack 3 

Intel Core 

Duo E6400 
2 

2.13 

GHz 
2 GB 

Host Windows XP Professional 

Service Pack 3 

Intel Core 2 

Quad Q6600 
4 

2.40 

GHz 
3 GB 

Bicycle Windows XP Professional 

Service Pack 3 

Intel  Core 

i7-860 
4 

2.80 

GHz 

3.18 

GB 

 

Researchers typically build scenario environments and track subject drivers from within 

the operator workstation, shown in Figure 2.4. Scenario modeling is performed using SimVista, a 

variant of Internet Scene Assemble (ISA), a 3D authoring tool that allows for the creation of 

dynamic interactive scenes. SimVista will only accept scenario elements in the form of Virtual 

Reality Modeling Language (VRML97) with the file extension “.wrl”. Although VRML is an 

older language and has been superseded by X3, it still is widely used within the graphics 

community and within software. VRML 97 provides adequate graphics for use in driving 
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simulation. However, one key disadvantage to the VRML format is that it is an ASCII clear-text 

format, which leads to larger file sizes and longer load times compared to structured, binary 

database formats.   

 

 

Figure 2.4 Operator Workstation for the Driving Simulator 

 

2.3 Laser Scanning and LIDAR 

 3D laser scanners, which use Light Detection and Ranging (LIDAR), are a line-of-sight 

technology that emits laser pulses at defined, horizontal and vertical angular increments to 

produce a 3D point cloud, containing XYZ coordinates for objects that return a portion of the 

light pulse within range of the scanner. This detailed point cloud is a virtual world that can be 

explored and analyzed. After data acquisition, a generated model from the point cloud can be 

used for different purposes. It worth mentioning that the basic model is the point cloud itself.  

 Time-of-flight and phase shift are two methods for range measurements used by 

scanners; however, most of the laser scanners are based on the time of flight principle. This 

technique allows measurements of distances up to several hundred of meters based on recording 

the time difference between emitted laser pulse and return signal. Phase shift scanners emit a 

sinusoidally modulated laser pulse, and calculate distance using a phase shift principle which 
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leads to determine distance at close range (up to one hundred meters) with accuracies of some 

millimeters and a higher data rate. The primary differences in terrestrial scanners between time 

of flight based scanners and phase based are therefore: higher range for “time of flight based” 

and higher measurement speeds and better precision for “phase based” laser scanners. However, 

recent advances in technology have improved speed and range capabilities of each system.   

2.3.1 Applications 

One of the key benefits of laser scanning is that you can collect the data once, but use 

many times across a transportation agency. A recent TRB project (NCHRP 15-44 Guidelines for 

the Use of mobile LIDAR in transportation applications; Olsen et al. 2013a) identified various 

applications of 3D laser scanning in transportation. A recent TRB synthesis also discusses 

applications, challenges, and benefits of scanning and other geospatial technologies in 

transportation (Olsen et al. 2013b). Figure 2.5 summarizes current and emerging applications of 

mobile LIDAR within transportation.  
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Figure 2.5 Examples of Applications of LIDAR in Transportation Applications (modified from 

NCHRP Report 748) 

 

2.3.2 Platforms 

LIDAR systems can be mounted on several platforms, typically airborne, static terrestrial, 

and mobile (vehicle platforms). Decreased sensor size and weight is enabling scanners to be 

attached to unmanned vehicle systems (UVS). Airborne LIDAR is the most mature platform, 

enabling coverage of large areas; however, its accuracy and resolution are lower than terrestrial-

based techniques.  Mounting the instrument on a static setup such as a tripod, where it remains 

for the duration of the scan provides data of the highest accuracy and resolution; however, 
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coverage is limited compared to the other techniques.   In mobile LIDAR systems (MLS), a 

scanner(s), a GPS receiver, and an IMU (Internal Measurement Unit) are mounted to a vehicle 

such as an automobile or boat. Due to its ability to capture detailed information along highway 

corridors rapidly, many transportation agencies are planning on using mobile LIDAR in the near 

future, if they are not already (Olsen et al. 2013a).   

2.3.3 Integration with photography 

Unfortunately, the laser scanner is not able to directly capture the color and texture of the 

measured surfaces, so many scan systems use calibrated digital cameras or video recorders to co-

acquire color information, providing greater detail (Toth 2009).  Most scan software packages 

can then map red, green, and blue (RGB) color values to each point in the scan, rendering a more 

realistic point cloud. This imagery can be used by itself as a video log without the scan data, if 

needed. McCarthy et al. (2008) discuss advantages to using combined LIDAR and photographic 

information for transportation applications including improved measurements, classifications, 

workflows, quality control checks, and usefulness. In that study, the scan data was particularly 

important for measurements on large objects such as bridges and embankments, while the 

photographs were most helpful for smaller objects. 

2.3.4 Challenges 

Despite the large benefits, LIDAR presents some challenges, including a steep learning 

curve, large datasets, equipment costs, and software costs. Another challenge is that because it is 

a line of sight technique, occlusions will often occur from obstructions.  
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Chapter 3 Methods 

3.1 Data Collection 

This project used a 3D laser scanner to collect a point cloud representation of the 

intersection of 14
th

 and Campus Way on the Oregon State University campus in Corvallis, 

Oregon. The primary dataset analyzed for this project consists of a scan with a 360
o
 horizontal 

and a 100
o
 vertical field of view (-40 to +60

o
 from horizon) was obtained, resulting in a dataset 

of approximately 7 million points. Seven digital images were obtained to form a panorama. Note 

that a point cloud comprised of several scans at multiple locations would result in a more 

complete point cloud. However, for the goals of this investigation the single scan was more than 

adequate. 

3.2 Formatting the Data File for the Simulator 

After the point cloud data was collected, it was necessary to export the data in the 

VRML97 format that the simulator could read. However, there are many software packages 

available for 3D laser scanning data acquisition and processing.  Each laser scanner manufacture 

generally provides its own package. Table 3 shows the supported export formats common 3D 

laser scan software packages, including Faro Scene, Leica Cyclone, Maptek I-Site Studio, Riegl 

Riscan Pro, and Trimble RealWorks.   

As seen in Table 3.1, some terrestrial scanning software packages can export triangulated 

objects with texture information directly into VRML file format. In situations that software is not 

able to export the files in VRML, a third party convertor program can be used such as Meshlab, 

an open-source model editing program. Simple construction and the well-defined standard of 

VRML format ensures the availability of a number of modeling tools and convertors. For 
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example the program “msh2wrl” functions as direct conversion between formats MSH (a Leica 

Cyclone software format for TIN) and VRML.  

 

Table 3.1 Supported Export Formats in Common 3D Laser Scan Packages 

SCENE 

by Faro: 

Cyclone 

by Leica:  

I-Site 

by Maptek: 

RiSCAN PRO  

by Riegl:  

Realworks 

by Trimble: 

.dxf .dxf .dxf .dxf .dxf 

ASCII ASCII (.txt) ASCII (.txt) ASCII ASCII 

VRML 

(*.wrl) 
 VRML (*.wrl) VRML (*.wrl) - 

E57 E57 - - - 

.ptc - - .ptc .ptc 

- - .obj .obj .obj 

- - .dwg - .dwg 

.pts .pts - .pts - 

.xyz .xyz - - - 

.ptx .ptx - .ptx - 

- .tif .jpg - .tif 

- .xml - - .xml 

.xyb .coe .3dv .3DD .dgn 

.igs .sdf / .sdnf .00t .3pf .kmz 

.pod .msh .ireg .pol .kml 

 .sim .ma .ply .bsf 

 .svy .dxb .asc  

 .ptz .3dp   

 

3.2.1 VRML Format 

Texture style and translation/rotation parameters are saved in Geometry and 

Transformation nodes respectively. VRML stands for “Virtual Reality Modeling Language". 

Created 3D scenes by VRML can be visualized through the World-Wide Web. Due to its 

widespread use over the last decade, there are a lot of helpful resources and sample datasets for 

VRML.  As such, herein we provide a basic description, but do not provide full technical details.   

VRML (*.wrl) files have 3 basic elements: 
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1.) Header: contains one line telling the browser that the file is VRML and its version, 

2.) Comments: A ‘#’ in front of each line in VRML format marks that line as comment, and 

3.) Nodes: The important part of VRML format which has everything. There are 9 major 

nodes in VRML II (Table 3.2). 

Table 3.2 Classifications of VRML II Nodes (modified from Web3d.org) 

Nodes: Definitions: 

Grouping 

Nodes 

Grouping nodes have a children field and define a coordinate space for its 

children. This coordinate space is relative to the coordinate space of the node of 

which the group node is a child. So transformations accumulate down the scene 

graph hierarchy. 

Special 

Groups 

 

This node has three subnodes:  

- Inline: for reading children data from a location in the WWW.  

- LOD: to identify complexity of the given object and  

- Switch: traverses zero or one of the nodes specified in the choice field 

Common 

Nodes 

To specifies audio data, point light source at 3D location in the local coordinate 

system and Script to program behavior in a scene. 

Sensors To generate events based on user actions, such as a mouse click. This node has 

the ability to generate events as time passes too.  

Shapes and 

geometry 

 

The Shape node associates a geometry node with nodes that define that 

geometry's appearance. A Shape node contains exactly one geometry node in its 

geometry field. This following node types are valid geometry nodes: box, cone, 

cylinder, ElevationGrid, extrusion, IndexedFaceSet, IndexedLineSet, PointSet, 

sphere, and text. 

Geometric 

Properties 

This node describes objects by Coordinate, Color, Normal, and 

TextureCoordinate. The geometric property nodes are defined as individual nodes 

so that instancing and sharing is possible between different geometry nodes. 

Appearance Appearance properties of an object can be defined by this node. The main options 

are Material and Textures.  

Interpolators  

 

Interpolators nodes are designed for linear keyframed animation. There are six 

different types of interpolator nodes, each based on the type of value that is 

interpolated: ColorInterpolator, CoordinateInterpolator, NormalInterpolator,  

OrientationInterpolator, PositionInterpolator and ScalarInterpolator. 

Bindable 

Nodes 

 

The browser maintains a stack for each type of binding node because they have 

the unique behavior that only one of each type can be active. The node at the top 

of stack, (the most recently bound node), is the active node for its type and is used 

by the browser to set world state. Bindable nodes are Background, Fog, 

NavigationInfo, and Viewpoint.  

 

http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#Shape
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#Box
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#Cone
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#Cylinder
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#ElevationGrid
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#ElevationGrid
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#IndexedFaceSet
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#IndexedLineSet
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#PointSet
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#Sphere
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#Text
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#Material
http://graphcomp.com/info/specs/sgi/vrml/spec/part1/concepts.html#InterpolatorNodes
http://graphcomp.com/info/specs/sgi/vrml/spec/part1/concepts.html#BindableLeafNodes
http://graphcomp.com/info/specs/sgi/vrml/spec/part1/concepts.html#BindableLeafNodes
http://graphcomp.com/info/specs/sgi/vrml/spec/part1/nodesRef.html#Background
http://graphcomp.com/info/specs/sgi/vrml/spec/part1/nodesRef.html#Fog
http://graphcomp.com/info/specs/sgi/vrml/spec/part1/nodesRef.html#NavigationInfo
http://graphcomp.com/info/specs/sgi/vrml/spec/part1/nodesRef.html#Viewpoint
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3.2.2 Color Scale 

In most 3D laser scan packages, texture information can be collected using the amplitude 

of the returned laser beam and digital images (with RGB color) for coloring. In 3D scan 

packages color can be exported in a variety of ways.  Typically, RGB color is exported within 

three ranges or scales, [0 1], [0 255], [0  65535] depending on the bit-depth allocated. However, 

in order to display colored point clouds in SimVista, RGB colors need to be coded as floating 

point values from [0 1].  

3.2.3 Coordinate System 

Selecting an appropriate coordinate systems plays an important role in exporting a file 

that can be manipulated and viewed in SimVista. Typically, there are three types of coordinate 

systems:  

 Scanner coordinate system – all data are referenced to the origin of the scanner when it 

was collected.  These coordinates are typically small since the scanner origin is located at 

(0,0,0). 

 Local project coordinate system – data are referenced to common points between the 

multiple scans collected in a local system.  Typically, these coordinates will range in 

values of 100’s or 1,000’s.   

 Geo-referenced coordinate system – data are referenced to a real-world coordinate system 

such as State Plane, UTM, etc.  This coordinates are usually in the hundreds of thousands 

to millions in size.   

In attempting to import files into the SimVista, the first file was using Oregon State Plane 

Coordinate System (OSPCS), which is a geo-referenced coordinate system. However, due to the 

large coordinates, point clouds using coordinates in the OSPCS were extremely difficult to 
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manipulate in SimVista, which fixes the origin at (0,0,0). Further, coordinates are truncated at the 

meter level for floating precision (7 digits), leading to significant display artifacts.   

The state plane coordinate system is designed to deal with large distances (half of the 

state of Oregon), and thus the coordinate values for locations in Corvallis are also large. A 

location in Corvallis might have an OSPCS designation of (104255.321 N, 2279548.465 E, in 

meters). When the OSPCS was used, data imported into SimVista was located about of 100 

kilometers away from the scenario origin in the north-south direction and 2280 kilometers in the 

east-west direction. This caused great difficulty in translating and rotating the point cloud data to 

create a scenario, and often exceeded the boundary limits of SimVista. 

To address this situation, the scanner coordinate system was first used. Using a scanner 

coordinate system set the location of the laser scanner as (0,0,0) and moved the point cloud much 

closer to the origin when imported into SimVista. This allowed researchers to more easily 

manipulate the data to create a simulation scenario. However, a limitation of this approach is that 

it only allows one to use data from one scan position or to transform other scans into the 

coordinates of the reference scan.  Further, orientation (rotation) of the data relative to north and 

the level plane are not present in the scanner coordinate system.  

Another fix is the truncation of the point clouds by a fixed amount (e.g., utilizing only the 

last four or five digits of the coordinates), which still allows for easy manipulation within a 

typical site. Additionally, this would provide a common reference frame so that multiple scans 

could be integrated into a single scene.  However, care should be taken to document the 

truncation so that the data can be linked quickly back to their original coordinates. The preferred 

method would be to apply a transform at the beginning of the VRML file by including the 

following: 
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Transform 

{ 

      translation -2270000 -104000 0  

      rotation 0 0 0 0  

} 

 

where the translation vector should be adapted to the coordinates of the particular dataset.   

3.2.4 Rotating the Point Cloud 

Another challenge in importing the point cloud model into SimVista is that engineers and 

computer graphic designers use different coordinate conventions. Computer graphic designers 

typically define the Z-axis as pointing out of the screen, and engineers typically define the Z-axis 

as elevation. ISA follows the computer graphic designers’ definition of the Z-axis, while most 

laser scanners use the engineers’ definition. This causes the point clouds imported into SimVista 

to be rotated sideways upon import.  

In order to resolve the difference between the axes in SimVista and the laser scanner 3D 

point clouds, two methods were tested. In the first method, Y and Z directions from the point 

cloud were switched and the Z values were made negative to conform to the ISA definitions. 

Unfortunately, the results of this time-consuming method did not completely solve the problem. 

In the second method, a transformation node is created in the VRML file and initiated using the 

following code:  

 

Transform 

{ 

     translation 0 0 0 

     rotation -1 0 0 1.57 

} 

 

Orientation of an object is defined by yaw (around the y axis), pitch (around the x axis) 

and roll (around the z axis). In VRML format, the Y-axis or the Z-axis can be consider as up 
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direction. In the first line, each value shows the amount of translation in X, Y and Z direction 

while the second line defines the rotation around the X, Y and Z axis (yaw, roll and pitch) by the 

amount or magnitude of rotation, in radians (last value).  

This transformation allows the point cloud model to be imported into SimVista while 

conforming to the axes definition used by ISA, making user-interaction and manipulation of the 

point cloud much simpler.  

3.3 Importing the Data File into the Simulator’s Scenario Editing Tool 

Once the point cloud model is in VRML format and the proper transformations have been 

applied, further manipulation of the VRML files is needed to create a scenario for us in the 

driving simulator. As an initial step, a small point cloud model was imported into the simulator. 

For this initial investigation, a stop sign and surrounding ground was isolated from the larger 

point cloud model and examined. 

3.3.1 Creating a Scene with a Point Cloud Object 

The point cloud .wrl file was opened using SimVista and saved as an object (Figure 3.1). 

This allowed the point cloud to be manipulated in a scenario with other element from SimVista. 

Next a generic ground tile is opened in SimVista. The point cloud object is then placed on the 

ground tile as any other object would be in SimVista. Once the scenario is complete the file must 

be published for use in SimCreator and the driving simulator. The published .wrl file will load 

and display properly in the driving simulator (Figure 3.2).  

The work process to import a small point cloud for use in the driving simulator is 

described in Figure 3.3. 
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Figure 3.1  Point Cloud of Stop Sign Saved as an Object 

 

 

Figure 3.2 Point Cloud Object in Driving Simulator 
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Figure 3.3 Work Flow to Import Small Point Clouds  

 

3.3.2 Creating Larger Scenes 

Having proof that point clouds could be imported into the driving simulator in a drivable 

environment, it was next desired to determine size limitations for larger datasets.   

The same process as describe in Figure 3.3 was attempted using the entire point cloud 

model from the scan of 14
th

 and Campus Way. This file was considerably larger (450MB with 

3,419,357 points) as compared to the stop sign (394KB with 2,982). Although this file was able 

to load into SimVista, attempts to publish this took several hours, and often crashed SimVista. 

When SimVista was able to publish a scenario of the full 450MB intersection point cloud model, 

SimCreator was unable to load and run the file in the driving simulator. This file was simply too 

large to be handled by the simulator software. The next chapter will discuss methods 

implemented to overcome these challenges.   
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Chapter 4 Methods Optimization 

Having established that small point clouds, on the order of 400KB, could be imported 

with relative ease, but files on the order of 450MB were impossible to import in the current 

software version, the next task was to develop a strategy to optimize the performance of the 

simulator using the largest of a point cloud environment possible. Several strategies were 

examined for controlling the size of the point clouds and optimizing performance in the 

simulator. 

4.1 Point Reduction 

The first and simplest way to reduce the size of the point cloud was to remove any 

extraneous points. For example the objects visible by line of sight to the scanner through a 

window in a building were captured in the initial scan. However, these object server no practical 

purpose in modeling the scenario and were removed.  

Additionally, the method being used to model the point clouds in the simulator places 

objects from the laser scan on a pre-existing ground tile, making much of the terrain information 

in the point cloud extraneous data. Removing unneeded features, although time consuming, 

significantly reduces the size of the files.   

4.2 Creating a TIN 

Another method for controlling the size of the point files was to create Triangular 

Irregular Network (TIN) from the point clouds. Two TIN models in VRML format were created 

from the same point cloud model of the intersection of 14th and Campus Way. The TIN models 

represented Kearney Hall, a building located near the intersection, and a stop sign at the 

intersection. One of the TIN models contains only triangular surfaces, while the other TIN model 
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was a combination of triangular surfaces and point clouds. Each of the files had an approximate 

size of 17 MB.  

Although the TIN models were able to load in the driving SimVista and SimCreator, they 

would not display correctly. The simulator displayed the TIN models as a collection of a few 

scattered triangles, not forming any real shape or pattern. Although further manipulation of the 

TIN models might have created versions that would display correctly, this effort was ultimately 

abandoned due to the significant processing required for TIN models.   

4.3 Sensitivity Analysis 

A sensitivity analysis was performed by splitting a large point cloud scene in to smaller 

partitions to examine the capability of simulator. A 275 MB point cloud model, with 2.1 million 

individual points, was divided into four partitions. Table 4.1 shows size information about each 

partition, the complete model, and the other files examine in this project. 

 

Table 4.1 VRML files used in Project 

File Name: Size: # of points: 

Stop Sign 394 KB 2,982 

Complete Model 450 MB 3,419,357 

Partition1 37 MB 283,700 

Partition2 37.5 MB 284,450 

Partition3 35 MB 269,630 

Partition4 166 MB 1.27 million 

Complete model 275 MB 2.1 million 

TIN models 17 MB 272,500 

 

Initially, the Complete model (275 MB with 2.1 million points) was published as a 

scenario. The simulator was unable to load and run this file. Next, all four partition files were 

placed on a tile and published as a scenario. When this scenario was loaded into the simulator, 
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the system ran, but with significant lagging. When Partition4 (166 MB with 1.27 million points) 

was removed, the scenario the simulator ran without lag. Then, scenarios were created with 

multiple sets of partitions 1-3 to examine how many objects that were 35MB in size could be run 

in a scenario without lag (Figure 4.1). With a total of 12 objects, approximately 35MB each, the 

system ran without lag. Note that the total size of these 12 objects is larger than the Complete 

model showing that many smaller point clouds objects run more efficiently in the simulator than 

a single large point cloud object. When the number 35MB objects were increased to 18 objects, 

the system began to show lag.  

 

 

Figure 4.1 Simulator Screen Shot from Environment with Twelve 35MB Point Clouds 

 

This same process was examined at its logical extreme.  A simulation scenario with 

enormous of small point clouds, 1800 of the 394KB stop signs, was created and published 

(Figure 4.2). This scenario ran without lag, although SimVista began having trouble dealing with 

the 1800 individual objects. The total size of these 1800 objects is larger (~710MB total) than the 

any other scenario tested. This again shows that a scenario of many small point clouds objects 

run more efficiently in the simulator than a single large point cloud object. When the number of 

stop signs was increased to 2200 the system began to lag.  
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Figure 4.2 Simulator Screen Shot from Environment with 1800 Stop Sign Point Clouds (394KB 

each) 

 

Since the simulator software is more capable of processing many small files more than 

one large file, it can be concluded that it is optimized to represent a complex scene with several 

smaller partitions. The ideal size to make each partition is not a set value, but must balance the 

total size of the point cloud, the additional work required to create the partitions, and the 

performance of the simulator.  
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Chapter 5 Conclusions and Recommendations 

Accurate 3D point cloud models of real world sites can be imported into a high fidelity 

driving simulator. Although the challenges in this process will be different for each driving 

simulation platform, the basic tasks remain the same, and many of the methods used to address 

challenges across platforms will be similar. In order to interface between the laser scanner data 

and a high fidelity driving simulator one must perform three tasks. 

1. Export the point cloud in a format that can be introduced into a driving simulator   

2. Import the point cloud into the simulator’s scenario editing tool in a way that allows 

manipulation and scenario design 

3. Optimize the performance of the point cloud scenario in the driving simulator 

 

A variety of software exists to address the exporting of point cloud model into several 

formats. This makes the first task simply finding the correct software to export or convert the 

point could model into the desired format. 

The challenges associated with second task will be different depending on the simulation 

platform used. Examining the OSU Driving Simulator running the software SimVista and 

SimCreator from the vendor RTI, the following suggestion will facilitate the creation of 

scenarios from point cloud models. 

 VRML97 is the only format that can be imported into RTI driving simulators. Any other 

format must be converted into VRML97. 

 The color scale must be in floating point precision values from [0 1] 

 Creating a transformation node is an effective, and sometimes necessary, way to translate 

and rotate the point cloud model before importing into SimVista. 
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 Using scanner coordinate system brings point clouds near the origin in SimVista making 

further manipulation simpler. When using multiple scans a truncated state plane 

coordinate system will allow for the easy manipulation of data while providing a 

common reference frame. However, using a transformation node in the VRML file is the 

preferred method.   

 

Finally, the task of optimizing the performance of a point cloud scenario is of paramount 

importance. A driving simulator is pointless if it cannot accurately reflect the real world, and the 

real world does not lag. The two most effect tools for combating system lag in the OSU Driving 

Simulator are: 

 Removing any extraneous data points from the model to control total file size. This can 

be accomplished by filtering points far from the scanner (by range) and areas of high 

point density close to the scanner (by minimum separation).  

 Splitting large files into several smaller partitions that are easier for the simulator to 

process. Although each driving simulator’s computer system is unique, partitions smaller 

than 35MB work best with the OSU driving simulator.  

 

This study has shown that importing point clouds in a driving simulator is feasible, but 

more work could be done in this area. 

 In this project, data from a single scan position was used. In order to create a full 3D 

model, more scan positions should be used. In this case, one would want to use a project 

coordinate system with coordinates of (0,0,0) at the center.  Alternatively, one can use the 

transform node function for geo-referenced data.  
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 Data from mobile LIDAR and imaging systems captured along a highway corridor can be 

integrated into the simulator.   

 Validation is always a concern when using a driving simulator. The uses of point cloud 

scenarios should be validated against other simulator models and the real world. 

 Other driving simulator platforms could be examined to identify and address the unique 

challenges associated with importing point cloud models in different simulation 

platforms.   

 A standard format for driving simulators scenarios should be developed to allow 

interoperability of data between driving simulators.  This format should be a structured, 

binary format for optimal loading.   
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