

RENDERING OF DENSE, POINT CLOUD DATA IN A

HIGH FIDELITY DRIVING SIMULATOR

FINAL PROJECT REPORT

by

David S. Hurwitz (PI)

Oregon State University

Michael Olsen (Co-PI)

Oregon State University

Patrick Marnell

Oregon State University

Hamid Mahmoudabadi

Oregon State University

for

Pacific Northwest Transportation Consortium (PacTrans)

USDOT University Transportation Center for Federal Region 10

University of Washington

More Hall 112, Box 352700

Seattle, WA 98195-2700

ii

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the

facts and the accuracy of the information presented herein. This document is disseminated

under the sponsorship of the U.S. Department of Transportation’s University

Transportation Centers Program, in the interest of information exchange. The Pacific

Northwest Transportation Consortium and the U.S. Government assumes no liability for

the contents or use thereof.

 iii

Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle 5. Report Date

Rendering of Dense, Point Cloud Data in a High Fidelity Driving Simulator September 15, 2014

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

David S. Hurwitz, Michael Olsen, Patrick Marnell, and Hamid Mahmoudabadi 10-739437

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)

PacTrans

Pacific Northwest Transportation

Consortium, University Transportation

Center for Region 10

University of Washington More Hall

112 Seattle, WA 98195-2700

Oregon State University

11. Contract or Grant No.

DTRT12-UTC10

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered

United States of America

Department of Transportation

Research and Innovative Technology Administration

Research 9/1/2012-7/31/2014

14. Sponsoring Agency Code

15. Supplementary Notes

Report uploaded at www.pacTrans.org

16. Abstract

Driving Simulators are advanced tools that can address many research questions in transportation. Recently they have been used to advance the

practice of transportation engineering, specifically signs, signals, pavement markings, and most powerfully to examine the safety and efficiency of
alternative transportation solutions. These simulators are a powerful 3D, virtual environment enabling the study of how drivers respond to potential

designs or policies. A key challenge is virtual environment that maintains high fidelity to the real world. 3D laser scanners, which use Light Detection

and Ranging (LIDAR), are line-of-sight technology that emits laser pulses at defined, horizontal and vertical angular increments to produce a 3D point

cloud, containing XYZ coordinates for objects that return a portion of the light pulse within range of the scanner. This detailed point cloud is a virtual

world that can be explored and analyzed by a variety of people. Through the combination of these two technological systems, more authentic, virtual,
built-environments can be used by transportation engineering professionals for the purpose of 3D design.

This research project focuses on the technical issues of importing and displaying 3D laser scan data within a driving simulator. For import in the
simulator, datasets need to be in the VRML97 format with color values scaled from [0 1]. A transformation needs to be applied to convert between

real-world coordinates and screen coordinates. Large datasets should be filtered, when possible, and tiled into very small increments (< 35 MB) to

maintain system interactivity.

17. Key Words 18. Distribution Statement

Driving Simulator, LIDAR, 3D-Design, Point Clouds No restrictions.

19. Security Classification (of this

report)

20. Security Classification (of this

page)

21. No. of Pages 22. Price

Unclassified. Unclassified. NA

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

grad_assist
Typewritten Text
2012-S-OSU-0010 01538105

iv

Table of Contents

Acknowledgments viii

Executive Summary iv

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 LITERATURE REVIEW .. 2

2.1 Driving Simulators ... 2

2.2 The OSU Driving Simulator .. 4

2.3 Laser Scanning and LIDAR ... 6

2.3.1 Applications .. 7

2.3.2 Platforms ... 8

2.3.3 Integration with photography .. 9

2.3.4 Challenges ... 9

CHAPTER 3 METHODS ... 10

3.1 Data Collection .. 10

3.2 Formatting the Data File for the Simulator .. 10

3.2.1 VRML Format .. 11

3.2.2 Color Scale .. 13

3.2.3 Coordinate System .. 13

3.2.4 Rotating the Point Cloud ... 15

3.3 Importing the Data File into the Simulator’s Scenario Editing Tool 16

3.3.1 Creating a Scene with a Point Cloud Object 16

3.3.2 Creating Larger Scenes ... 18

CHAPTER 4 METHODS OPTIMIZATION ... 19

4.1 Point Reduction .. 19

4.2 Creating a TIN ... 19

4.3 Sensitivity Analysis ... 20

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 23

v

List of Figures

Figure 2.1 Desktop Simulator (from STISIM 2013) .. 2

Figure 2.2 Toyota Driving Simulator (from McNamara 2009) .. 3

Figure 2.3 Views of the OSU Driving Simulator from inside (left) and outside (right) the vehicle

... 4

Figure 2.4 Operator Workstation for the Driving Simulator .. 6

Figure 2.5 Examples of Applications of LIDAR in Transportation Applications (modified from

NCHRP Report 748) ... 8

Figure 3.1 Point Cloud of Stop Sign Saved as an Object .. 17

Figure 3.2 Point Cloud Object in Driving Simulator .. 17

Figure 3.3 Work Flow to Import Small Point Clouds ... 18

Figure 4.1 Simulator Screen Shot from Environment with Twelve 35MB Point Clouds 21

vi

List of Tables

Table 2.1 Comparison of Four Scenario Authoring Systems (Adapted from Fisher et al. 2011) .. 3

Table 2.2 OSU Simulator Server Specifications... 5

Table 3.1 Supported Export Formats in Common 3D Laser Scan Packages................................ 11

Table 4.1 VRML files used in Project .. 20

vii

List of Abbreviations

3D: Three-dimensional

MLS: Mobile LIDAR systems

LIDAR: Light Detection and Ranging

OSU: Oregon State University

PacTrans: Pacific Northwest Transportation Consortium

RTI: Real-Time Technologies Inc.

VRML: Virtual Reality Markup Language

WSDOT: Washington State Department of Transportation

viii

Acknowledgments

 This project was funded by the Pacific Northwest Transportation Consortium (PacTrans).

The authors would like to recognize the contributions of time and technical expertise to the

project made by graduate research assistants Patrick Marnell and Hamid Mahmoudabadi.

Additionally, the authors would like to recognize the matching support provided by the

Portland Bureau of Transportation. Without this matching support, the research would not have

been possible.

Finally, the authors thank Leica Geosystems and Maptek I-Site for providing software

that was used for this study.

ix

Executive Summary

 Driving Simulators are advanced tools that have been applied to the study of engineering,

physiology, and medicine. Recently they have been used to advance the practice of

transportation engineering, specifically signs, signals, pavement markings, and most powerfully

to examine the safety and efficiency of alternative transportation solutions. These simulators are

a powerful 3D, virtual environment enabling the study of how drivers respond to potential

designs or policies. A key challenge is virtual environment that maintains high fidelity to the real

world. 3D laser scanners, which use Light Detection and Ranging (LIDAR), are line-of-sight

technology that emits laser pulses at defined, horizontal and vertical angular increments to

produce a 3D point cloud, containing XYZ coordinates for objects that return a portion of the

light pulse within range of the scanner. This detailed point cloud is a virtual world that can be

explored and analyzed by a variety of people. Through the combination of these two

technological systems, more authentic, virtual, built-environments can be used by transportation

engineering professionals for the purpose of 3D design.

The specific purpose of this research effort was to determine if dense 3-D point clouds

could be rendered in the driving simulator. In order to interface between the laser scanner data

and a high fidelity driving simulator one must perform three tasks:

1. Export the point cloud from the scan software package into a data format that can be

introduced into a driving simulator efficiently and without data loss

2. Import the point cloud into the simulator’s scenario editing tool in a way that allows

manipulation and scenario design

3. Optimize the performance of the point cloud scenario in the driving simulator

x

These tasks were addressed by using a 3D laser scanner to collect a point cloud representation of

the intersection of 14
th

 and Campus Way on the Oregon State University campus in Corvallis,

Oregon. The following major findings were determined from the investigation:

 VRML97 is the only common format that can be imported into RTI driving simulators

that are exported from various 3D scanning software packages. Any other format must be

converted into VRML97.

 The color scale must be coded in floating point precision values from [0 1].

 Creating a transformation node within the VRML file is an effective, and sometimes

necessary, way to translate and rotate the point cloud model to reduce large coordiantes

before importing into SimVista.

 Alternatively, using scanner coordinate system brings point clouds near the origin in

SimVista making further manipulation simpler. When using multiple scans a truncated

state plane (or similar) coordinate system will allow for the easy manipulation of data

while providing a common reference frame.

 Per object, file sizes must be kept relatively small, requiring careful thought in

processing.

 Removing any extraneous data points from the model can help control total file size and

still maintain high quality data. This can be accomplished by filtering points far from the

scanner (by range) and areas of high point density close to the scanner (by minimum

separation).

 Splitting large files into several, smaller partitions that are easier for the simulator to

process. Although each driving simulator’s computer system is unique, partitions smaller

than 35MB work best with the OSU driving simulator.

1

Chapter 1 Introduction

 The purpose of this project is to create accurate, high-resolution, three-dimensional (3D)

models of real world sites using laser scanning point clouds that are compatible with a high

fidelity driving simulator. The use of laser scanners to create point cloud models enables the

rapid creation of extremely accurate digital 3D models of real world sites. If point cloud models

can be imported into a high fidelity driving simulator efficiently, this would allow researchers

and engineers to study potentially dangerous real world transportation facilities in a low risk

simulation environment. The three main challenges associated with this task will be exporting

the point cloud in a format that can be introduced into a driving simulator, importing the point

cloud into the simulator’s scenario editing tool, and optimize the performance of a point cloud

scenario in a driving simulator.

Although some similarities exist between different driving simulators, there little

interoperability and coordination in development between platforms. In particular, the diversity

of software used to model driving simulator scenarios creates challenges unique to each platform

rendering scenario sharing between platforms inefficient and impractical. For this reason the

research team focused on developing a process to import point clouds models into a mid-range

driving simulator located at the Oregon State University (OSU) Driving Simulation Laboratory,

which runs the SimVista software from the vendor Realtime Technologies Incorporated (RTI).

While the exact procedure and constraints will vary depending on the platform, it is likely that

many challenges overcome in this study will exist with other platforms.

2

Chapter 2 Literature Review

2.1 Driving Simulators

There is a wide price spectrum of driving simulators, depending on their ability to

recreate and interact with a virtual environment. On the low end, costing as little as $10,000,

there are small desktop based simulators with video game like controls (Figure 2.1) (Fisher et al.

2011, STSIM 2013). On the high end, there are facilities like Toyota’s $15 million driving

simulator which has a 35 meter by 20 meter motion platform enabling motion in nine degrees of

freedom (translation in the X, Y, & Z directions, yaw, pitch, & roll, and three vibration degrees

of freedom (McNamara 2009, Fisher et al. 2011). Table 2.2 shows the Toyota driving simulator.

The software that operates a driving simulator and is used to create scenarios is specific

to each driving simulation platform. In the Handbook of Driving Simulation for Engineering,

Medicine, and Psychology Fisher et al. (2011) present a comparison of four scenario authoring

systems (Table 2.1).

Figure 2.1 Desktop Simulator (from STISIM 2013)

3

Figure 2.2 Toyota Driving Simulator (from McNamara 2009)

Table 2.1 Comparison of Four Scenario Authoring Systems (Adapted from Fisher et al. 2011)

 STISIM Drive: SimVista: Hank: ISAT:

Developer
Systems Technology

Inc.

Realtime

Technologies Inc.

Hank Project,

Dept. of Computer

Science, The

University of Iowa

The University of

Iowa, NADS

Type
Commercial, low

cost, small scale

Multi-purpose,

commercial

simulator

In-house, small

scale research

simulator

Large-scale

research system;

smaller systems

running miniSim

Web Site www.stisimdrive.com www.simcreator.com

www.cs.uiowa.edu/
~hank

www.nads-
sc.uiowa.edu

Interface Text-based GUI Text-based GUI

Object

Placement
By route On Map By address On Map

Scene

Integrated

development; text-

based

Integrated

development: tile-

based

Developed

separately; text

based "logical"

scene + visual

model

Integrated

development; tile

based

Ambient

Traffic

Created manually by

individual vehicle

events

Automatically

generated using

"bubble-based"

algorithm

Generated by

sources

Generated by

sources

Critical

Events

Controlled by

triggers built into

individual events

Controlled by

special scenario

objects - sensors

Controlled by

triggers built into

other scenario

objects

Controlled by

special scenario

objects - triggers

http://www.stisimdrive.com/
http://www.simcreator.com/
http://www.cs.uiowa.edu/~hank
http://www.cs.uiowa.edu/~hank
http://www.nads-sc.uiowa.edu/
http://www.nads-sc.uiowa.edu/

4

2.2 The OSU Driving Simulator

The OSU Driving Simulator (Figure 2.3) is a high-fidelity, motion-based simulator,

consisting of a full 2009 Ford Fusion cab mounted above an electric pitch motion system with

one degree of freedom capable of rotating ±4 degrees. The vehicle cab is mounted on the pitch

motion system with the driver's eye-point located at the center of the viewing volume. The pitch

motion system enables the accurate representation of acceleration or deceleration on tangent

section of roadway (OSU 2011).

Figure 2.3 Views of the OSU Driving Simulator from inside (left) and outside (right) the vehicle

Three silicon-based liquid-crystal display (LCD) projectors with a resolution of 1,400 by

1,050 pixels each are used to project a front view of 180 degrees by 40 degrees. These front

screens measure 11 feet by 7.5 feet. A digital light-processing (DLP) projector is used to display

a rear image for the driver’s center mirror. The two side mirrors have embedded LCDs. The

refresh rate for the projected graphics is 60 hertz. Ambient sounds around the vehicle and

internal sounds to the vehicle are modeled with a surround sound system.

5

The OSU Driving Simulator runs the simulation software SimCreator, also provided by

vendor RTI. The computer hardware that the driving simulator operates on consists of a server

integrating five computers to run the car interface and a sixth server for the bicycle interface (not

used in this study). Of the computers for the car interface, one computer processes each of the

visual channels center, rear, right, and left, and the fifth computer acts as the host, coordinating

the others. Table 2.2 shows technical specifications for the OSU Driving Simulator server.

Table 2.2 OSU Simulator Server Specifications

OS: Processor: Cores: Speed: RAM:

Center Windows XP Professional

Service Pack 3

Intel Core 2

Quad Q6600
4

2.40

GHz
2 GB

Rear Windows XP Professional

Service Pack 3

Intel Core

Duo E6400
2

2.13

GHz
2 GB

Left Windows XP Professional

Service Pack 3

Intel Core

Duo E6400
2

2.13

GHz
2 GB

Right Windows XP Professional

Service Pack 3

Intel Core

Duo E6400
2

2.13

GHz
2 GB

Host Windows XP Professional

Service Pack 3

Intel Core 2

Quad Q6600
4

2.40

GHz
3 GB

Bicycle Windows XP Professional

Service Pack 3

Intel Core

i7-860
4

2.80

GHz

3.18

GB

Researchers typically build scenario environments and track subject drivers from within

the operator workstation, shown in Figure 2.4. Scenario modeling is performed using SimVista, a

variant of Internet Scene Assemble (ISA), a 3D authoring tool that allows for the creation of

dynamic interactive scenes. SimVista will only accept scenario elements in the form of Virtual

Reality Modeling Language (VRML97) with the file extension “.wrl”. Although VRML is an

older language and has been superseded by X3, it still is widely used within the graphics

community and within software. VRML 97 provides adequate graphics for use in driving

6

simulation. However, one key disadvantage to the VRML format is that it is an ASCII clear-text

format, which leads to larger file sizes and longer load times compared to structured, binary

database formats.

Figure 2.4 Operator Workstation for the Driving Simulator

2.3 Laser Scanning and LIDAR

 3D laser scanners, which use Light Detection and Ranging (LIDAR), are a line-of-sight

technology that emits laser pulses at defined, horizontal and vertical angular increments to

produce a 3D point cloud, containing XYZ coordinates for objects that return a portion of the

light pulse within range of the scanner. This detailed point cloud is a virtual world that can be

explored and analyzed. After data acquisition, a generated model from the point cloud can be

used for different purposes. It worth mentioning that the basic model is the point cloud itself.

 Time-of-flight and phase shift are two methods for range measurements used by

scanners; however, most of the laser scanners are based on the time of flight principle. This

technique allows measurements of distances up to several hundred of meters based on recording

the time difference between emitted laser pulse and return signal. Phase shift scanners emit a

sinusoidally modulated laser pulse, and calculate distance using a phase shift principle which

7

leads to determine distance at close range (up to one hundred meters) with accuracies of some

millimeters and a higher data rate. The primary differences in terrestrial scanners between time

of flight based scanners and phase based are therefore: higher range for “time of flight based”

and higher measurement speeds and better precision for “phase based” laser scanners. However,

recent advances in technology have improved speed and range capabilities of each system.

2.3.1 Applications

One of the key benefits of laser scanning is that you can collect the data once, but use

many times across a transportation agency. A recent TRB project (NCHRP 15-44 Guidelines for

the Use of mobile LIDAR in transportation applications; Olsen et al. 2013a) identified various

applications of 3D laser scanning in transportation. A recent TRB synthesis also discusses

applications, challenges, and benefits of scanning and other geospatial technologies in

transportation (Olsen et al. 2013b). Figure 2.5 summarizes current and emerging applications of

mobile LIDAR within transportation.

8

Figure 2.5 Examples of Applications of LIDAR in Transportation Applications (modified from

NCHRP Report 748)

2.3.2 Platforms

LIDAR systems can be mounted on several platforms, typically airborne, static terrestrial,

and mobile (vehicle platforms). Decreased sensor size and weight is enabling scanners to be

attached to unmanned vehicle systems (UVS). Airborne LIDAR is the most mature platform,

enabling coverage of large areas; however, its accuracy and resolution are lower than terrestrial-

based techniques. Mounting the instrument on a static setup such as a tripod, where it remains

for the duration of the scan provides data of the highest accuracy and resolution; however,

Applications of

LIDAR

Project Development

Operations

Project Planning

Safety

Research

Construction

Asset Management

Tourism

Maintenance

Virtual tour of

attractions

Drainage/

Flooding
Power line

clearance

Bridge

inspections

Extraction of geometric

properties and features

for analysis

Forensics\Accident

investigation

Driver assistance/

autonomous navigation

Emergency

response

Traffic congestion/

Parking Utilization

Land use/zoning

Inventory mapping

Modeling and

inspection

Automated/semi-

automated extraction

of signs

Unstable slopes

Landslide

assessment

Coastal erosion

Roadway

analysis

Topographic

mapping

General

measurements

Machine control and

construction automation

As-built/repaired

documentation

Post construction

quality control

Pavement

smoothness/quality

determination

Feature extraction for CAD

models & baseline data

Virtual, 3D design

(alternatives and clash

detection)

Bridge Information

Modeling (BrIM)

Billboard Management

Clearances

Quantities

American with

Disabilities Act (ADA)

compliance

Building Information

Modeling (BIM)

Historical

Preservation

Vegetation

Management

Environmental

Studies

9

coverage is limited compared to the other techniques. In mobile LIDAR systems (MLS), a

scanner(s), a GPS receiver, and an IMU (Internal Measurement Unit) are mounted to a vehicle

such as an automobile or boat. Due to its ability to capture detailed information along highway

corridors rapidly, many transportation agencies are planning on using mobile LIDAR in the near

future, if they are not already (Olsen et al. 2013a).

2.3.3 Integration with photography

Unfortunately, the laser scanner is not able to directly capture the color and texture of the

measured surfaces, so many scan systems use calibrated digital cameras or video recorders to co-

acquire color information, providing greater detail (Toth 2009). Most scan software packages

can then map red, green, and blue (RGB) color values to each point in the scan, rendering a more

realistic point cloud. This imagery can be used by itself as a video log without the scan data, if

needed. McCarthy et al. (2008) discuss advantages to using combined LIDAR and photographic

information for transportation applications including improved measurements, classifications,

workflows, quality control checks, and usefulness. In that study, the scan data was particularly

important for measurements on large objects such as bridges and embankments, while the

photographs were most helpful for smaller objects.

2.3.4 Challenges

Despite the large benefits, LIDAR presents some challenges, including a steep learning

curve, large datasets, equipment costs, and software costs. Another challenge is that because it is

a line of sight technique, occlusions will often occur from obstructions.

10

Chapter 3 Methods

3.1 Data Collection

This project used a 3D laser scanner to collect a point cloud representation of the

intersection of 14
th

 and Campus Way on the Oregon State University campus in Corvallis,

Oregon. The primary dataset analyzed for this project consists of a scan with a 360
o
 horizontal

and a 100
o
 vertical field of view (-40 to +60

o
 from horizon) was obtained, resulting in a dataset

of approximately 7 million points. Seven digital images were obtained to form a panorama. Note

that a point cloud comprised of several scans at multiple locations would result in a more

complete point cloud. However, for the goals of this investigation the single scan was more than

adequate.

3.2 Formatting the Data File for the Simulator

After the point cloud data was collected, it was necessary to export the data in the

VRML97 format that the simulator could read. However, there are many software packages

available for 3D laser scanning data acquisition and processing. Each laser scanner manufacture

generally provides its own package. Table 3 shows the supported export formats common 3D

laser scan software packages, including Faro Scene, Leica Cyclone, Maptek I-Site Studio, Riegl

Riscan Pro, and Trimble RealWorks.

As seen in Table 3.1, some terrestrial scanning software packages can export triangulated

objects with texture information directly into VRML file format. In situations that software is not

able to export the files in VRML, a third party convertor program can be used such as Meshlab,

an open-source model editing program. Simple construction and the well-defined standard of

VRML format ensures the availability of a number of modeling tools and convertors. For

11

example the program “msh2wrl” functions as direct conversion between formats MSH (a Leica

Cyclone software format for TIN) and VRML.

Table 3.1 Supported Export Formats in Common 3D Laser Scan Packages

SCENE

by Faro:

Cyclone

by Leica:

I-Site

by Maptek:

RiSCAN PRO

by Riegl:

Realworks

by Trimble:

.dxf .dxf .dxf .dxf .dxf

ASCII ASCII (.txt) ASCII (.txt) ASCII ASCII

VRML

(*.wrl)
 VRML (*.wrl) VRML (*.wrl) -

E57 E57 - - -

.ptc - - .ptc .ptc

- - .obj .obj .obj

- - .dwg - .dwg

.pts .pts - .pts -

.xyz .xyz - - -

.ptx .ptx - .ptx -

- .tif .jpg - .tif

- .xml - - .xml

.xyb .coe .3dv .3DD .dgn

.igs .sdf / .sdnf .00t .3pf .kmz

.pod .msh .ireg .pol .kml

 .sim .ma .ply .bsf

 .svy .dxb .asc

 .ptz .3dp

3.2.1 VRML Format

Texture style and translation/rotation parameters are saved in Geometry and

Transformation nodes respectively. VRML stands for “Virtual Reality Modeling Language".

Created 3D scenes by VRML can be visualized through the World-Wide Web. Due to its

widespread use over the last decade, there are a lot of helpful resources and sample datasets for

VRML. As such, herein we provide a basic description, but do not provide full technical details.

VRML (*.wrl) files have 3 basic elements:

12

1.) Header: contains one line telling the browser that the file is VRML and its version,

2.) Comments: A ‘#’ in front of each line in VRML format marks that line as comment, and

3.) Nodes: The important part of VRML format which has everything. There are 9 major

nodes in VRML II (Table 3.2).

Table 3.2 Classifications of VRML II Nodes (modified from Web3d.org)

Nodes: Definitions:

Grouping

Nodes

Grouping nodes have a children field and define a coordinate space for its

children. This coordinate space is relative to the coordinate space of the node of

which the group node is a child. So transformations accumulate down the scene

graph hierarchy.

Special

Groups

This node has three subnodes:

- Inline: for reading children data from a location in the WWW.

- LOD: to identify complexity of the given object and

- Switch: traverses zero or one of the nodes specified in the choice field

Common

Nodes

To specifies audio data, point light source at 3D location in the local coordinate

system and Script to program behavior in a scene.

Sensors To generate events based on user actions, such as a mouse click. This node has

the ability to generate events as time passes too.

Shapes and

geometry

The Shape node associates a geometry node with nodes that define that

geometry's appearance. A Shape node contains exactly one geometry node in its

geometry field. This following node types are valid geometry nodes: box, cone,

cylinder, ElevationGrid, extrusion, IndexedFaceSet, IndexedLineSet, PointSet,

sphere, and text.

Geometric

Properties

This node describes objects by Coordinate, Color, Normal, and

TextureCoordinate. The geometric property nodes are defined as individual nodes

so that instancing and sharing is possible between different geometry nodes.

Appearance Appearance properties of an object can be defined by this node. The main options

are Material and Textures.

Interpolators

Interpolators nodes are designed for linear keyframed animation. There are six

different types of interpolator nodes, each based on the type of value that is

interpolated: ColorInterpolator, CoordinateInterpolator, NormalInterpolator,

OrientationInterpolator, PositionInterpolator and ScalarInterpolator.

Bindable

Nodes

The browser maintains a stack for each type of binding node because they have

the unique behavior that only one of each type can be active. The node at the top

of stack, (the most recently bound node), is the active node for its type and is used

by the browser to set world state. Bindable nodes are Background, Fog,

NavigationInfo, and Viewpoint.

http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#Shape
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#Box
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#Cone
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#Cylinder
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#ElevationGrid
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#ElevationGrid
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#IndexedFaceSet
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#IndexedLineSet
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#PointSet
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#Sphere
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#Text
http://www.sv.vt.edu/classes/vrml/vrml97book/ch3.htm#Material
http://graphcomp.com/info/specs/sgi/vrml/spec/part1/concepts.html#InterpolatorNodes
http://graphcomp.com/info/specs/sgi/vrml/spec/part1/concepts.html#BindableLeafNodes
http://graphcomp.com/info/specs/sgi/vrml/spec/part1/concepts.html#BindableLeafNodes
http://graphcomp.com/info/specs/sgi/vrml/spec/part1/nodesRef.html#Background
http://graphcomp.com/info/specs/sgi/vrml/spec/part1/nodesRef.html#Fog
http://graphcomp.com/info/specs/sgi/vrml/spec/part1/nodesRef.html#NavigationInfo
http://graphcomp.com/info/specs/sgi/vrml/spec/part1/nodesRef.html#Viewpoint

13

3.2.2 Color Scale

In most 3D laser scan packages, texture information can be collected using the amplitude

of the returned laser beam and digital images (with RGB color) for coloring. In 3D scan

packages color can be exported in a variety of ways. Typically, RGB color is exported within

three ranges or scales, [0 1], [0 255], [0 65535] depending on the bit-depth allocated. However,

in order to display colored point clouds in SimVista, RGB colors need to be coded as floating

point values from [0 1].

3.2.3 Coordinate System

Selecting an appropriate coordinate systems plays an important role in exporting a file

that can be manipulated and viewed in SimVista. Typically, there are three types of coordinate

systems:

 Scanner coordinate system – all data are referenced to the origin of the scanner when it

was collected. These coordinates are typically small since the scanner origin is located at

(0,0,0).

 Local project coordinate system – data are referenced to common points between the

multiple scans collected in a local system. Typically, these coordinates will range in

values of 100’s or 1,000’s.

 Geo-referenced coordinate system – data are referenced to a real-world coordinate system

such as State Plane, UTM, etc. This coordinates are usually in the hundreds of thousands

to millions in size.

In attempting to import files into the SimVista, the first file was using Oregon State Plane

Coordinate System (OSPCS), which is a geo-referenced coordinate system. However, due to the

large coordinates, point clouds using coordinates in the OSPCS were extremely difficult to

14

manipulate in SimVista, which fixes the origin at (0,0,0). Further, coordinates are truncated at the

meter level for floating precision (7 digits), leading to significant display artifacts.

The state plane coordinate system is designed to deal with large distances (half of the

state of Oregon), and thus the coordinate values for locations in Corvallis are also large. A

location in Corvallis might have an OSPCS designation of (104255.321 N, 2279548.465 E, in

meters). When the OSPCS was used, data imported into SimVista was located about of 100

kilometers away from the scenario origin in the north-south direction and 2280 kilometers in the

east-west direction. This caused great difficulty in translating and rotating the point cloud data to

create a scenario, and often exceeded the boundary limits of SimVista.

To address this situation, the scanner coordinate system was first used. Using a scanner

coordinate system set the location of the laser scanner as (0,0,0) and moved the point cloud much

closer to the origin when imported into SimVista. This allowed researchers to more easily

manipulate the data to create a simulation scenario. However, a limitation of this approach is that

it only allows one to use data from one scan position or to transform other scans into the

coordinates of the reference scan. Further, orientation (rotation) of the data relative to north and

the level plane are not present in the scanner coordinate system.

Another fix is the truncation of the point clouds by a fixed amount (e.g., utilizing only the

last four or five digits of the coordinates), which still allows for easy manipulation within a

typical site. Additionally, this would provide a common reference frame so that multiple scans

could be integrated into a single scene. However, care should be taken to document the

truncation so that the data can be linked quickly back to their original coordinates. The preferred

method would be to apply a transform at the beginning of the VRML file by including the

following:

15

Transform

{

 translation -2270000 -104000 0

 rotation 0 0 0 0

}

where the translation vector should be adapted to the coordinates of the particular dataset.

3.2.4 Rotating the Point Cloud

Another challenge in importing the point cloud model into SimVista is that engineers and

computer graphic designers use different coordinate conventions. Computer graphic designers

typically define the Z-axis as pointing out of the screen, and engineers typically define the Z-axis

as elevation. ISA follows the computer graphic designers’ definition of the Z-axis, while most

laser scanners use the engineers’ definition. This causes the point clouds imported into SimVista

to be rotated sideways upon import.

In order to resolve the difference between the axes in SimVista and the laser scanner 3D

point clouds, two methods were tested. In the first method, Y and Z directions from the point

cloud were switched and the Z values were made negative to conform to the ISA definitions.

Unfortunately, the results of this time-consuming method did not completely solve the problem.

In the second method, a transformation node is created in the VRML file and initiated using the

following code:

Transform

{

 translation 0 0 0

 rotation -1 0 0 1.57

}

Orientation of an object is defined by yaw (around the y axis), pitch (around the x axis)

and roll (around the z axis). In VRML format, the Y-axis or the Z-axis can be consider as up

16

direction. In the first line, each value shows the amount of translation in X, Y and Z direction

while the second line defines the rotation around the X, Y and Z axis (yaw, roll and pitch) by the

amount or magnitude of rotation, in radians (last value).

This transformation allows the point cloud model to be imported into SimVista while

conforming to the axes definition used by ISA, making user-interaction and manipulation of the

point cloud much simpler.

3.3 Importing the Data File into the Simulator’s Scenario Editing Tool

Once the point cloud model is in VRML format and the proper transformations have been

applied, further manipulation of the VRML files is needed to create a scenario for us in the

driving simulator. As an initial step, a small point cloud model was imported into the simulator.

For this initial investigation, a stop sign and surrounding ground was isolated from the larger

point cloud model and examined.

3.3.1 Creating a Scene with a Point Cloud Object

The point cloud .wrl file was opened using SimVista and saved as an object (Figure 3.1).

This allowed the point cloud to be manipulated in a scenario with other element from SimVista.

Next a generic ground tile is opened in SimVista. The point cloud object is then placed on the

ground tile as any other object would be in SimVista. Once the scenario is complete the file must

be published for use in SimCreator and the driving simulator. The published .wrl file will load

and display properly in the driving simulator (Figure 3.2).

The work process to import a small point cloud for use in the driving simulator is

described in Figure 3.3.

17

Figure 3.1 Point Cloud of Stop Sign Saved as an Object

Figure 3.2 Point Cloud Object in Driving Simulator

18

Figure 3.3 Work Flow to Import Small Point Clouds

3.3.2 Creating Larger Scenes

Having proof that point clouds could be imported into the driving simulator in a drivable

environment, it was next desired to determine size limitations for larger datasets.

The same process as describe in Figure 3.3 was attempted using the entire point cloud

model from the scan of 14
th

 and Campus Way. This file was considerably larger (450MB with

3,419,357 points) as compared to the stop sign (394KB with 2,982). Although this file was able

to load into SimVista, attempts to publish this took several hours, and often crashed SimVista.

When SimVista was able to publish a scenario of the full 450MB intersection point cloud model,

SimCreator was unable to load and run the file in the driving simulator. This file was simply too

large to be handled by the simulator software. The next chapter will discuss methods

implemented to overcome these challenges.

19

Chapter 4 Methods Optimization

Having established that small point clouds, on the order of 400KB, could be imported

with relative ease, but files on the order of 450MB were impossible to import in the current

software version, the next task was to develop a strategy to optimize the performance of the

simulator using the largest of a point cloud environment possible. Several strategies were

examined for controlling the size of the point clouds and optimizing performance in the

simulator.

4.1 Point Reduction

The first and simplest way to reduce the size of the point cloud was to remove any

extraneous points. For example the objects visible by line of sight to the scanner through a

window in a building were captured in the initial scan. However, these object server no practical

purpose in modeling the scenario and were removed.

Additionally, the method being used to model the point clouds in the simulator places

objects from the laser scan on a pre-existing ground tile, making much of the terrain information

in the point cloud extraneous data. Removing unneeded features, although time consuming,

significantly reduces the size of the files.

4.2 Creating a TIN

Another method for controlling the size of the point files was to create Triangular

Irregular Network (TIN) from the point clouds. Two TIN models in VRML format were created

from the same point cloud model of the intersection of 14th and Campus Way. The TIN models

represented Kearney Hall, a building located near the intersection, and a stop sign at the

intersection. One of the TIN models contains only triangular surfaces, while the other TIN model

20

was a combination of triangular surfaces and point clouds. Each of the files had an approximate

size of 17 MB.

Although the TIN models were able to load in the driving SimVista and SimCreator, they

would not display correctly. The simulator displayed the TIN models as a collection of a few

scattered triangles, not forming any real shape or pattern. Although further manipulation of the

TIN models might have created versions that would display correctly, this effort was ultimately

abandoned due to the significant processing required for TIN models.

4.3 Sensitivity Analysis

A sensitivity analysis was performed by splitting a large point cloud scene in to smaller

partitions to examine the capability of simulator. A 275 MB point cloud model, with 2.1 million

individual points, was divided into four partitions. Table 4.1 shows size information about each

partition, the complete model, and the other files examine in this project.

Table 4.1 VRML files used in Project

File Name: Size: # of points:

Stop Sign 394 KB 2,982

Complete Model 450 MB 3,419,357

Partition1 37 MB 283,700

Partition2 37.5 MB 284,450

Partition3 35 MB 269,630

Partition4 166 MB 1.27 million

Complete model 275 MB 2.1 million

TIN models 17 MB 272,500

Initially, the Complete model (275 MB with 2.1 million points) was published as a

scenario. The simulator was unable to load and run this file. Next, all four partition files were

placed on a tile and published as a scenario. When this scenario was loaded into the simulator,

21

the system ran, but with significant lagging. When Partition4 (166 MB with 1.27 million points)

was removed, the scenario the simulator ran without lag. Then, scenarios were created with

multiple sets of partitions 1-3 to examine how many objects that were 35MB in size could be run

in a scenario without lag (Figure 4.1). With a total of 12 objects, approximately 35MB each, the

system ran without lag. Note that the total size of these 12 objects is larger than the Complete

model showing that many smaller point clouds objects run more efficiently in the simulator than

a single large point cloud object. When the number 35MB objects were increased to 18 objects,

the system began to show lag.

Figure 4.1 Simulator Screen Shot from Environment with Twelve 35MB Point Clouds

This same process was examined at its logical extreme. A simulation scenario with

enormous of small point clouds, 1800 of the 394KB stop signs, was created and published

(Figure 4.2). This scenario ran without lag, although SimVista began having trouble dealing with

the 1800 individual objects. The total size of these 1800 objects is larger (~710MB total) than the

any other scenario tested. This again shows that a scenario of many small point clouds objects

run more efficiently in the simulator than a single large point cloud object. When the number of

stop signs was increased to 2200 the system began to lag.

22

Figure 4.2 Simulator Screen Shot from Environment with 1800 Stop Sign Point Clouds (394KB

each)

Since the simulator software is more capable of processing many small files more than

one large file, it can be concluded that it is optimized to represent a complex scene with several

smaller partitions. The ideal size to make each partition is not a set value, but must balance the

total size of the point cloud, the additional work required to create the partitions, and the

performance of the simulator.

23

Chapter 5 Conclusions and Recommendations

Accurate 3D point cloud models of real world sites can be imported into a high fidelity

driving simulator. Although the challenges in this process will be different for each driving

simulation platform, the basic tasks remain the same, and many of the methods used to address

challenges across platforms will be similar. In order to interface between the laser scanner data

and a high fidelity driving simulator one must perform three tasks.

1. Export the point cloud in a format that can be introduced into a driving simulator

2. Import the point cloud into the simulator’s scenario editing tool in a way that allows

manipulation and scenario design

3. Optimize the performance of the point cloud scenario in the driving simulator

A variety of software exists to address the exporting of point cloud model into several

formats. This makes the first task simply finding the correct software to export or convert the

point could model into the desired format.

The challenges associated with second task will be different depending on the simulation

platform used. Examining the OSU Driving Simulator running the software SimVista and

SimCreator from the vendor RTI, the following suggestion will facilitate the creation of

scenarios from point cloud models.

 VRML97 is the only format that can be imported into RTI driving simulators. Any other

format must be converted into VRML97.

 The color scale must be in floating point precision values from [0 1]

 Creating a transformation node is an effective, and sometimes necessary, way to translate

and rotate the point cloud model before importing into SimVista.

24

 Using scanner coordinate system brings point clouds near the origin in SimVista making

further manipulation simpler. When using multiple scans a truncated state plane

coordinate system will allow for the easy manipulation of data while providing a

common reference frame. However, using a transformation node in the VRML file is the

preferred method.

Finally, the task of optimizing the performance of a point cloud scenario is of paramount

importance. A driving simulator is pointless if it cannot accurately reflect the real world, and the

real world does not lag. The two most effect tools for combating system lag in the OSU Driving

Simulator are:

 Removing any extraneous data points from the model to control total file size. This can

be accomplished by filtering points far from the scanner (by range) and areas of high

point density close to the scanner (by minimum separation).

 Splitting large files into several smaller partitions that are easier for the simulator to

process. Although each driving simulator’s computer system is unique, partitions smaller

than 35MB work best with the OSU driving simulator.

This study has shown that importing point clouds in a driving simulator is feasible, but

more work could be done in this area.

 In this project, data from a single scan position was used. In order to create a full 3D

model, more scan positions should be used. In this case, one would want to use a project

coordinate system with coordinates of (0,0,0) at the center. Alternatively, one can use the

transform node function for geo-referenced data.

25

 Data from mobile LIDAR and imaging systems captured along a highway corridor can be

integrated into the simulator.

 Validation is always a concern when using a driving simulator. The uses of point cloud

scenarios should be validated against other simulator models and the real world.

 Other driving simulator platforms could be examined to identify and address the unique

challenges associated with importing point cloud models in different simulation

platforms.

 A standard format for driving simulators scenarios should be developed to allow

interoperability of data between driving simulators. This format should be a structured,

binary format for optimal loading.

26

References

Fisher, Donald L., Matthew Rizzo, and Jeff K. Caird. 2011. “Handbook of driving simulation

for engineering, medicine, and psychology.” CRC Press.

Hurwitz, David S., Tuss, Halston, Olsen, Michael J., Roe, Gene V., and Knodler, Michael A.

2013. “Transportation applications for Mobile LIDAR scanning: A state-of-the-practice

questionnaire,” Transportation Research Record Annual Meeting, CD-ROM.

McCarthy, T., Zheng, J., and Stewart, F., 2008. “Integration of dynamic LIDAR and Image

Sensor Data for Route Corridor Mapping,” ISPRS Congress

McNamara, Phil. “Inside Toyota’s $15m driving simulator” Car: The World’s Best Car

Magazine. 2009 <http://www.carmagazine.co.uk/Community/Car-Magazines-Blogs/Phil-

McNamara-Blog/Inside-Toyotas-15m-driving-simulator/> Accessed 5/8/2013

Olsen, Michael J., Roe, Gene V., Glennie, Craig, Persi, Fred., Reedy, Marcus., Hurwitz, David,

Williams, Keith, Tuss, Halston, Squellati, Anthony, and Knodler, Michael A. 2013a.

“Guidelines for the use of mobile LIDAR in transportation applications,” TRB NCHRP

Final Report 748, 250pp.

Olsen, Michael J., Roe, Gene V., and Raugust, John. 2013. “Use of advanced geospatial data

tools, technologies, and Information in DOT projects”, NCHRP Synthesis 446, Topic 43-

09, 87 pp.

STISIM. “M100 Series Simulation Systems” <http://www.stisimdrive.com/products/simulation-

systems/m100-series> Accessed 5/8/2013

Oregon State University. Driving Simulator. Retrieved from Driving and Bicycling Research

Lab. 2011 <http://cce.oregonstate.edu/research/drivingsimulator/DrivingSim.php>

Accessed 5/24/13

Schneider, Daniel K., Martin-Michiellot, Sylvere. 1998. “VRML Primer and Tutorial”,

University of Geneva.

Toth, Charles. K., 2009. “R&D of mobile LIDAR mapping and future trends.” In Proceeding of

ASPRS 2009 Annual Conference (Baltimore, Maryland).

Web3d. “The Virtual Reality Markup Language: Concepts”

<http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-

VRML97/part1/concepts.html> Accessed 10/29/2013.

http://www.carmagazine.co.uk/Community/Car-Magazines-Blogs/Phil-McNamara-Blog/Inside-Toyotas-15m-driving-simulator/
http://www.carmagazine.co.uk/Community/Car-Magazines-Blogs/Phil-McNamara-Blog/Inside-Toyotas-15m-driving-simulator/
http://www.stisimdrive.com/products/simulation-systems/m100-series
http://www.stisimdrive.com/products/simulation-systems/m100-series
http://cce.oregonstate.edu/research/drivingsimulator/DrivingSim.php
http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/part1/concepts.html
http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/part1/concepts.html

