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A B S T R A C T

Cut-in maneuvers, when vehicles change lane and move closely in front of a vehicle in the adjacent lane, are very
common but adversely affect roadway capacity and traffic safety. Yet little research has comprehensively ex-
plored cut-in behavior, particularly in China, which has a challenging driving environment and is often used for
connected and autonomous vehicle testing. This study developed an extraction algorithm to retrieve 5608 cut-in
events from the Shanghai Naturalistic Driving Study. The data were used to identify cut-in characteristics, in-
cluding motivation, turn signal usage, duration, urgency, and impact. Results showed that almost half of drivers
did not use a turn signal when cutting in, and that cut-ins had a shorter time to collision (TTC) than other lane
changing. A lognormal distribution was found to produce the best fit for cut-in duration, which varied from 0.7 s
to 12.4 s. As characteristics were found to vary by roadway type and motivation, multilevel mixed-effects linear
models were developed to examine the influencing factors of cut-in gap acceptance. Acceptance of lead and lag
gaps was significantly affected by environmental variables, vehicle type, and kinematic parameters, which has
important implications for microsimulation, as does the large variance in duration that makes specifying
duration essential when setting scenarios. Improvement in safety education is warranted by the high degrees of
risk and aggression shown by TTC and turn signal usage; but the ability of drivers, who needed to yield to the
cut-in, to predict danger and adopt safe, suitable, and timely strategies suggests that advanced driver assistance
systems and connected and autonomous vehicles can learn similar responses.

1. Introduction

Lane change maneuvers are common on the road, but studies have
shown that lane changing tends to cause negative shockwaves (i.e., one
car brakes so others must subsequently brake) (Cassidy and Bertini,
1999). Cut-ins, in which lane-changing vehicles move into the space
ahead of a relatively closely following vehicle in the adjacent lane, are
potentially dangerous and may lead to traffic collisions. Improper lane
changes, including overtaking and unsafe cut-ins, account for 4.9% of
all 2015 crashes in China (Traffic Management Bureau of the Public
Security Ministry, 2016); and in the U.S., unsafe lane changes and
merge maneuvers account for approximately 5% of all crashes and 7%
of all crash fatalities (Hou et al., 2015). Analyzing cut-in behavior is
therefore important for safety studies, but is also valuable for other
applications such as roadway capacity modeling (Zhou and Peng,
2015).
Cut-ins are dangerous because they unpredictably change the safety

gap between vehicles. This effect on the safety gap additionally causes
interference to advanced driver assistance systems (ADAS) and

connected and autonomous vehicles (CAVs) (Dou et al., 2016; Casner
et al., 2016). A following vehicle equipped with ADAS, or with partially
automated driving (SAE’s Level 2), must adjust its following gap in
response to the cut-in, resulting in unnecessary and often emergency
acceleration and braking that contribute not only to wasted fuel and
emissions, but also to traffic waves which worsen the situation further
(Sultan et al., 2002). Cut-in behavior is one reason why advanced
technologies such as ADAS need to be tested in various complicated
situations before going into mass production (Bazilinskyy et al., 2015).
Since the first lane change model was proposed by Gipps (1986),

researchers in developed countries have devoted substantial effort to
investigating and modeling lane change characteristics. Several com-
prehensive examinations of lane changing have been conducted in the
U.S. since the 1990s (Olsen et al., 2002; Lee et al., 2004; Chen et al.,
2015), and their insight into the behaviors and parameters associated
with lane changes (Olsen et al., 2002) have been applied to driving
simulation systems, which have since been commonly used for the
further study of lane change and other driving behaviors. However,
while it is well known that China’s traffic systems have developed
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rapidly during recent years, few studies of driving behavior have ana-
lyzed lane change maneuvers in China due to limited data collection
methods. As a result, most simulation models are based on western
research, where the cultural environment, including driving style, ve-
hicle type, and traffic regulations, may differ from that of developing
countries (Lindgren et al., 2008). Chinese drivers face, for example, a
challenging driving environment of omnipresent pedestrians, electric
bikes, bicycles, aggressive drivers, and, indeed, frequent lane changes,
which are performed nearly three times more often than in the U.S.
(Wang and Li, 2016). In addition to the possible unsuitability of si-
mulation models, some ADAS and CAV functions may also not be sui-
table in China, as their algorithms and strategies are calibrated and
tested using data from other nations; consequently, their functions may
be inefficient or unreliable when the vehicle faces an abrupt cut-in from
an adjacent lane. The increased popularity of CAV testing in China
increases the requirement for more effective and robust advanced
traffic technologies appropriate to China.
To better address this need, real-world driving data were collected

through the Shanghai Naturalistic Driving Study (SH-NDS). NDS has
been shown to offer a new and complementary approach to existing
methods for understanding driving behavior in normal, impaired, and
safety-critical situations (Regan et al., 2012). The SH-NDS data collec-
tion started in December 2012 and ended in December 2015, during
which 60 licensed drivers travelled a total of approximately
161,055 km (Zhu et al., 2017). Using the SH-NDS’s significant quantity
of Chinese driving data, this study comprehensively explores cut-in
behavior, including comparing Chinese and U.S. cut-in behavior, for the
purpose of contributing to the international development of lane
change theory and its various applications, including traffic simulation,
ADAS, and CAV.

2. Literature review

Few studies have focused on cut-in characteristics specifically, and
those have addressed a limited number of characteristics, mostly for
practical application. To explore the following distances at which cut-in
events occur, for example, Nodine et al. (2016) analyzed distance and
headway; and Kim et al. (2017) studied decision-making when drivers
encountered cut-in vehicles on highways. Most of the literature ad-
dressed in this section therefore pertains to lane changing in general.

2.1. Lane change characteristics analyses

Characteristics analyses are typically conducted using microscopic
traffic simulation software such as CORSIM (FHWA, 1998), MITSIM
(Yang and Koutsopoulos, 1996) and SITRAS (Hidas and
Behbahanizadeh, 1999). For example, when drivers decide to change
lanes, they must consider the possibility, necessity, and desirability of
the maneuver (Gipps, 1986). Using MITSIM, Yang and Koutsopoulos
(1996) proposed classifying lane changes as either mandatory or dis-
cretionary, a classification that has since become prevalent in lane
change research. Mandatory lane changes are executed when the driver
must leave the current lane, e.g., to use an off-ramp to exit a freeway or
to avoid a work zone. Discretionary lane changes are executed when a
lane change is not required, but the driver perceives that driving con-
ditions in the target lane are better, e.g., for maintaining a desired speed
(Toledo et al., 2003).
Next Generation Simulation (NGSIM) data are also frequently used

to explore lane change behavior; e.g., Thiemann et al. (2008) calculated
lane change duration, time gaps, and time to collision (TTC), and
Toledo and Zohar (2007) investigated duration. Other studies use nat-
uralistic driving study (NDS) data. Olsen et al. (2002) used NDS to
conduct a comprehensive examination of lane changes in the U.S., in-
cluding frequency, duration, urgency, and severity of lane changes in
relation to maneuver type, direction, and other classification variables.
In China, lane change frequency, turn signal usage, and rear mirror

usage were explored by Dang et al. (2014) and Wang and Li (2016),
using real vehicle experimental data and naturalistic driving data, re-
spectively.
Turn signal usage is an important characteristic of lane changes.

Using a turn signal when changing lanes is a statutory law in many
countries, as a safer environment is created when the intention of the
lane changer is more clearly delivered to surrounding vehicles (Dang
et al., 2014). A turn signal, when used properly, enhances the flow of
traffic and prevents near-crash situations (Ponziani, 2012). Lee et al.
(2004) and Ponziani (2012) found that neglected turn signal use when
changing lanes caused more crashes than distracted driving.
Duration, another crucial characteristic, starts with the lane chan-

ging vehicle initiating movement in its original lane, and ends with its
stabilization in the target lane. Duration has a significant effect on si-
mulation outputs, e.g., on the acceleration behavior of the lane chan-
ging vehicle and the response of other adjacent vehicles during the
execution of the lane change (Toledo and Zohar, 2007). In application,
connected and autonomous vehicles (CAVs) can learn to perform lane
changes in a human-like manner by controlling the duration, and they
can learn to respond more effectively to the lane change behavior of
human-driven vehicles (Bascunana, 1995). Because of its importance,
duration has been well studied, with results ranging from 1 to 16 s
(Hetrick, 1997; Chovan et al., 1994; Toledo and Zohar, 2007). Few
studies, however, have focused specifically on the duration of cut-ins.
Time to collision (TTC) is also an important characteristic, parti-

cularly useful for evaluating the functions of advanced driver assistance
systems (ADAS). TTC is the time it would take for vehicles to collide if
the following vehicle does not perform an avoidance maneuver; i.e.,
TTC equals the distance between the lane changer and the following
vehicle divided by their relative speed. Talmadge et al. (1997) con-
cluded TTC seems a likely candidate to activate warnings for drivers
from crash avoidance systems, and Olsen et al. (2002) divided lane
changing into a 4-point scale that indicates how soon a lane change is
needed, based on TTC with the closest vehicle ahead.

2.2. Cut-in gap acceptance

Gap acceptance is a key aspect of driver decision-making, and is a
decisive element in lane change analysis. Drivers considering a lane
change decide whether to accept an available gap, i.e., they assess
whether the longitudinal gaps between their own vehicle and the ve-
hicles in the target lane are sufficient. The target gap is separated into
the lead gap, which is the longitudinal distance between the lead ve-
hicle (LV) in the target lane and the lane changing vehicle (CV); and the
lag gap, the distance between the following vehicle (FV) and the CV
(Toledo et al., 2003).
Toledo et al. (2003) and Choudhury and Farheen (2005) modeled

lane change gap acceptance by assuming an available gap was accep-
table if it was greater than the critical gap, that is, the smallest gap that
a driver perceives will ensure successful lane change. Lee et al. (2016)
found that when drivers consider executing discretionary lane changes,
both relative velocity and relative lead gap are the main criteria, and
have similar positive influences on the choice to change lanes; i.e., as
either relative velocity or relative lead gap increases, lane changing
becomes more likely. Some simulation models have found that gap
acceptance is also affected by speed differences between the target lane
and the original lane (Laval and Daganzo, 2005), i.e., a gap is more
acceptable if the target lane speed is higher than the original lane. Gap
acceptance differs for mandatory lane changes, in which the situation is
more urgent. Because the driver has fewer choices than for discre-
tionary lane changes, the acceptable gap is smaller.
In summary, while a number of lane change behavior analyses have

been conducted, and models have been proposed and developed, few
researchers have carried out comprehensive and integrated studies of
cut-in characteristics, especially of gap acceptance. Further, few have
provided evidence using real-world data to examine the multiple
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variables that affect cut-in maneuvers, and fewer still have given at-
tention specifically to Chinese drivers’ cut-in behavior.

3. Data preparation

3.1. Shanghai naturalistic driving study

The data used in this paper were collected in the Shanghai
Naturalistic Driving Study (SH-NDS) jointly conducted by Tongji
University, General Motors (GM), and the Virginia Tech Transportation
Institute (VTTI). Five GM light vehicles equipped with SHRP2 NextGen
Data Acquisition Systems (DAS) were used to collect real-world driving
data. The DAS includes an interface box to collect vehicle controller
area network (CAN) data, an accelerometer for longitudinal and lateral
acceleration, a radar system that measures range and range rate to the
lead vehicle in front (LV) and those in the adjacent lanes, a light meter,
a temperature/humidity sensor, a GPS sensor for location, and four
synchronized cameras that can be used to validate the sensor-based
findings (Regan et al., 2012; Zhu et al., 2017). As shown in Fig. 1, the
four camera views monitor the driver’s face (1a), the driver’s hand
maneuvers (1b), the forward roadway (1c), and the rear, or roadway
behind the vehicle (1d).

3.2. Cut-in events extraction

This study focuses on cut-in maneuvers from the lanes adjacent to
the DAS-equipped NDS vehicles, which function as the following ve-
hicle (FV); that is, they provide the perspective of the FV when another
vehicle is changing lanes (CV) into the gap in front of it. Based on the
fundamental information (e.g., position, velocity and acceleration) of
lane changing vehicles recorded by NDS FV vehicles, the general cut-in
characteristics, CV gap acceptance, and FV responses (e.g., braking,
speed variation and drivers’ other maneuvers) were comprehensively
explored. A typical cut-in scenario is illustrated in Fig. 2.
An extraction algorithm was developed to obtain cut-in events, and

the results were then manually validated by observing the videos from

the forward roadway camera. As shown in Fig. 3, the LV vehicle directly
in the front of the NDS vehicle in the target lane is designated as in the
T0 position. If the NDS’s radar records a change in the position of a
vehicle from the adjacent lane, from which it moves to the T0 position,
it is determined to be a CV intending to execute a lane change (i.e., in
Fig. 3, the red car was T0 at first, and then the blue car moved into the
FV’s current lane; the blue car is designated as the new T0). If the lane
change meets the X-Range critical condition below, it is determined to
be a cut-in maneuver.
To develop the extraction algorithm, an empirical analysis was

conducted to identify threshold values for detecting cut-in events from
the NDS data. As part of the analysis, 500 random cut-in events were
manually observed, and the criteria for extracting cut-in events based
on several relevant variables were derived. These extraction criteria are
given below:

• Y-Range (lateral distance) is less than 2.2m, to show the CV has
initiated its movement toward the lane of the FV; the Y-Range is less
than 1.2m to ensure the CV is stable in the target lane. Together,
these criteria guarantee the CV changes its lane.
• Maximum lateral acceleration of FV is less than 0.07 g, and lane
offset is less than 1.0 m. These criteria guarantee the FV does not
move in a lateral direction.
• The critical condition is that the X-Range (longitudinal distance
from CV to FV) should not be so large that the cut-in has no effect on
the FV. Based on the 500 observations, this study defined the
maximum X-Range to be 75m.
• The velocity of both FV and CV should be more than 1m/s. This
criterion ensures that the two vehicles are always in motion.

Fig. 4 illustrates the critical time points (i.e. A, B, and C) utilized in
the DAS cut-in data extraction process. At the onset of the cut-in, the
CV’s Y-Range (i.e., its lateral distance in relation to the FV) is about
3.5 m, as the CV is still in its own lane but has just initiated the
movement. The initiation point (i.e. A in Fig. 4) is defined as the last
peak (also known as the local maximum) of the Y-Range determined by

Fig. 1. Four camera views for the SH-NDS DAS.
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a built-in function of MATLAB, findpeaks. When the CV’s Y-Range has
decreased to less than the distance between the lane edge and the FV, it
can be assumed that the CV has crossed its lane. This is the cross-lane
point (i.e. B in Fig. 4) of the cut-in. In about 1.5 s from the cross-lane
position, the CV becomes T0. The Y-Range at this point, marked by the
red vertical, is very small and approaching zero. The first zero value of
Y-Range after the CV becomes T0 is defined as the end of cut-in be-
havior, or stabilization (i.e. C in Fig. 4). From this point, the CV has
completely stabilized its movement within the target lane. Note that the
cut-in duration is defined as the time required for the CV to travel from
A to C. Therefore, the duration in Fig. 4 is about 5.5 s.
The number of cut-in events obtained was 5608, each event vali-

dated by the forward roadway camera video recording. Roadway type,
weather and light conditions, turn signal usage, and CV and LV types
were also identified during validation.
The 5608 lane change events occurred on three road types with

different speed limits: 1038 occurred on surface roads with speed limits

ranging from 30 km/h to 80 km/h, 2901 on expressways with a speed
limit range of 60 km/h to 80 km/h, and 1669 on freeways with speed
limits ranging from 80 km/h to 120 km/h.

4. Cut-in behavior characteristics

Four characteristics of cut-in behavior are presented in this section.
First, motivations are identified, followed by observations on turn
signal usage, which can reflect drivers’ safety awareness. The execution
characteristics of duration and distribution are quantified, and, finally,
urgency is classified through TTC (time to collision) and the FV’s re-
sponse.

4.1. Cut-in motivations

4.1.1. Mandatory and discretionary
Following Yang and Koutsopoulos (1996), cut-in motivations were

Fig. 2. Radar target’s (CV) position and motion during a cut-in scenario.

Fig. 3. Radar target T0 change, detecting a cut-in of the blue car from adjacent lane (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).

Fig. 4. Y-Range time points of cut-in sequence: initiate, cross-lane and stabilize.
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classified as either mandatory or discretionary. Mandatory cut-ins have
three primary motivations: approaching an intersection in situations
where the vehicle must change lanes to be in the correct lane to turn
(motivation ID=1, as shown in Table 1), entering or exiting a limited-
access roadway (motivation ID=2), and avoiding a work zone or other
obstacle (motivation ID= 3). Motivations for discretionary cut-ins in-
clude avoiding traveling behind a slow lead vehicle (motivation ID= 4)
and changing to a fast or slow lane to maintain a desired speed (mo-
tivation ID= 5). Cut-ins without any clear motivation were considered
discretionary in this study (motivation ID=6). Briefly, the motivations
and their classifications are:

1 (M): approaching intersection
2 (M): entering/exiting roadway
3 (M): avoiding obstacle
4 (D): avoiding slow lead vehicle
5 (D): preferring fast/slow lane
6 (D): undetermined

The 5608 cut-in events were identified and coded through watching
videos from the forward roadway cameras. The results, classified by
road type, are shown in Table 1.
As shown in Table 1, avoiding following a slow lead vehicle is, by

far, the main motivation (ID=4) for cut-in behavior on all road types.
It accounted for 52.8% of all cut-in behavior, and 63.8% and 64% on
freeways and expressways, respectively. One of the possible explana-
tions is that the speed limits are higher on freeways and expressways,
the presence of a slow lead vehicle would likely influence the speed and
position of a vehicle behind it. CV drivers tend to change lanes in this
situation to maintain their current speed by passing (Hetrick, 1997).
These figures are higher than the 37.24% on interstates and highways
found by Olsen et al. (2002) in their U.S. study of general lane changes.
It is reasonable to assume that most Chinese drivers execute cut-in
maneuvers to pursue the shortest travelling time and comfortable
driving experience, so a larger driving space and faster speed are gen-
erally preferable.
Some differences between road types have obvious explanations.

For example, the mandatory Motivation 2 is most common on ex-
pressways, where drivers have to merge onto ramps when entering and
exiting, whereas Motivation 1 is drivers’ main motive on surface roads
where there are frequent intersections. Discretionary Motivation 5 is
mostly observed on freeways, where drivers are often required to
choose the correct lane according to their speed. Notable, however, is
that a considerable number of cut-ins (207 events) occurred without
any apparent definite purpose (Motivation 6), more, in fact, than oc-
curred when drivers maneuvered to avoid obstacles (Motivation 3). The
percentage of discretionary Motivation 6 is considerably higher on
freeways (6.2%), which can be attributed to the faster speed and more
available lanes.

4.1.2. Single and multiple lanes
When cutting in, some drivers move laterally a single lane, while

others cross two or more lanes, a choice that varies according to mo-
tivation and road type. The proportion of single and multiple lane cut-
ins according to road type is shown in Table 2.

As shown in Table 2, more than 95% of discretionary cut-ins on all
road types are single lane. When drivers execute discretionary cut-ins,
they want to maintain a desired speed, and in most cases, a single lane
change can attain this goal. Multiple lane cut-ins have a much greater
frequency of mandatory motivation, where the situations are more
urgent, e.g., drivers are avoiding obstacles, or they are in the leftmost
lane of the road when they realize they must presently exit the freeway
or turn at an intersection. In contrast with the under-5% figures for
multiple-lane discretionary cut-ins, a minimum of 25.2% (for surface
roads) of mandatory cut-ins are executed across multiple lanes. The
proportion is even higher on freeways and expressways, at 43.8 and
38.1, respectively, and are roughly double the 20.0% figure for multiple
lane changes in U.S. on-ramp and off-ramp areas observed by Goswami
and Bham (2006). This comparison may indicate that Chinese drivers
are slightly more aggressive as they execute multiple lane cut-in more
frequently, which is rather dangerous for surrounding vehicles.

4.2. Urgency and TTC

Time to collision (TTC) is used extensively to evaluate safety as it is
essential for calculating rear-end conflict. Rear-end conflict is the most
common cut-in risk (Hu et al., 2017), but its avoidance is also a
common reason to change lanes. Olsen et al. (2002) and Lee et al.
(2004) used TTC to classify the urgency of lane changes on a 4-point
rating scale (1 = not urgent, 4 = critical). Based on TTC with the
closest vehicle ahead or behind, the urgency level indicates how soon a
lane change is needed. This study adopted the same scale to rate cut-in
urgency, i.e., 1 = non-urgent (TTC > 5.5 s), 2 = urgent (5.5 s
TTC > 3 s), 3 = forced (3 s TTC > 1 s), and 4 = critical or near
crash (1 s TTC). To compare cut-ins with all lane changes, the mean
cut-in TTC was calculated. Results of our TTC classification of cut-in
urgency for different road types are in presented Table 3.
As shown in Table 3, 79.4% of cut-ins on all road types were rated

with an urgency of 1, i.e., non-urgent; 15.7% were rated with an ur-
gency of 2, and 4.7% were rated with an urgency of 3, i.e., forced. All
levels but 1 (non-urgent) had higher percentages than those in the
Olsen et al. (2002) and Lee et al. (2004) all lane change study, which
indicates cut-in behavior is comparatively more dangerous than other
lane changes. Because urgency is based on time to collision, the shorter
TTC demonstrates that cut-ins can have a negative impact on traffic
safety.

Table 1
Cut-in motivations for different road types.

Road Type Classification Motivation ID: (percent)

Surface Road Mandatory 1: 34.4 2: 11.3 3: 3.2
Discretionary 4: 40.2 5: 8.2 6: 2.7

Freeway Mandatory 1: 0 2: 10.9 3: 1.3
Discretionary 4: 63.8 5: 17.8 6: 6.2

Expressway Mandatory 1: 0 2: 17.2 3: 1.8
Discretionary 4: 64.0 5: 14.4 6: 2.6

Table 2
Single/multiple lane cut-in for different road types.

Road Type Motivation Single Lane Cut-in Multiple Lane Cut-in

Surface Road Mandatory 74.8% 25.2%
Discretionary 99.1% 0.9%

Freeway Mandatory 56.2% 43.8%
Discretionary 96.2% 3.8%

Expressway Mandatory 61.9% 38.1%
Discretionary 95.7% 4.3%

Table 3
Cut-in urgency based on TTC for different road types.

Urgency 1 Non-
Urgent

% 2
Urgent

% 3
Forced

% 4 Critical %

Road Type

Surface Road 398 72.2 113 20.5 39 7.1 1 0.2
Freeway 514 85.2 69 11.4 19 3.2 1 0.2
Expressway 1,096 79.7 215 15.6 60 4.4 3 0.3
All Road Types 2,008 79.4 397 15.7 118 4.7 5 0.2
All Lane Changes

(Olsen et al.)
2,945 91.2 269 8.3 14 0.5 0 0
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Freeways and expressways showed lower percentages of level 2 and
3 urgency than surface roads, which indicates cut-ins on surface roads
are more dangerous. A reasonable explanation is that surface roads may
have more influences on cut-in behavior, such as pedestrians, electric
bikes and bicycles, unlimited access, lower absolute speeds, more fre-
quent mandatory cut-in situations, and shorter distance ranges, both
laterally and longitudinally, between the CV and FV.
Minimum TTC, i.e., the minimum positive value of TTC during the

cut-in process, was calculated to verify the urgency of cut-ins on dif-
ferent types of roads. As shown in Fig. 5, the proportion of minimum
TTC less than 3 s (forced and critical near crash) on surface roads was
9.9%, considerably larger than its proportion on freeways and ex-
pressways. Although most cut-ins have limited impact on following
vehicles (minimum TTC > 3 s), those with small TTC values, reaching
almost 10% on surface roads, are high-risk and cannot be ignored.
While none of this study’s cut-in events resulted in a crash, the
abruptness of low TTC cut-ins puts heavy pressure on FV drivers to
make appropriate decisions and maintain steady control of the vehicle
once they recognize the intention of a lane changing vehicle. On the
other hand, the absence of crashes suggests that because most drivers
can handle urgent cut-in scenarios well, ADAS and CAV can learn some
valuable skills from human drivers.

4.3. Turn signal usage

Turn signal usage was observed on different road types by watching
the forward roadway videos. Although Chinese traffic law requires use
of turn signals when changing lanes, Table 4 shows that the usage
percentages are below 50% on every road type. The 48.7% overall
figure is similar to the U.S. proportion of turn signal usage for urgent
and forced lane changes, which are both included in our definition of
cut-in. Olsen et al. (2002), found that U.S. drivers used turn signals for
53.3% of urgent lane changes (5.5 s TTC > 3 s) and 44.0% of forced
lane changes (TTC 3 s) on interstates and freeways, and this study
found 48.6% usage on expressway cut-ins and 49.3% usage on

freeways. Only small differences were observed between road types, but
it is perhaps surprising that turn signal usage was lowest on surface
roads where lane changing is more frequent.
In general, low turn signal usage can be explained the lack of a

direct and immediate cause-effect relationship between not using a turn
signal and an unsafe consequence, which can make drivers think that
neglecting the turn signal is not dangerous; that is, drivers can think
they are safe when they are not if they do not accurately perceive their
risk exposure (Lee et al., 2004). Urgency appears to lower the frequency
of turn signal usage, however. Because drivers vary in their skill level
and familiarity with a particular road, a driver may be challenged by
simply getting the vehicle from point A to point B; this situation can
create an urgency in which using a turn signal does not come to mind
(Ponziani, 2012). Likewise, urgency might contribute to mere care-
lessness. Cut-ins are the most urgent of lane changes. Turn signal usage
by Chinese drivers for overall lane changing has been found to be 65%
on highways (Dang et al., 2014), considerably higher than the 49.3%
freeway cut-in usage observed in this study. Considering that usage may
be even higher when turns are anticipated, or less urgent than for lane
changes, we observed 50 surface road trips from the SH-NDS database,
and found that turn signal use for normal left or right turns was 78%.
Observing signal use for 22 intersections in Canada, Faw (2013) found a
very large range, 54% to 95% depending on driver population, location,
and traffic conditions, but the overall turn signal use rate was 76%,
similar to the Shanghai proportion.

4.4. Cut-in duration and distribution selection

As illustrated in Fig. 4 above, cut-in duration is defined in the same
way as lane change duration, i.e., the time span from the lane changer’s
initiation of lateral movement to stabilization in the target lane. For the
5608 cut-in events, the duration varies from 0.7 s to 12.4 s, with a mean
of 3.91 s and standard deviation of 2.34 s A correlation test was con-
ducted to analyze the relationship between road type and cut-in dura-
tion. As results showed there was no significant relationship between
the two variables (P-Value= 0.3451), it can be assumed that cut-in
duration does not differ significantly on different types of road. Pre-
vious studies on lane change duration in general show a range of 1–16 s,
however, so it becomes clear that cut-in maneuvers have shorter
duration.
Duration distribution is one of the most important parameters used

in microscopic traffic simulation. There are 8 possible distribution al-
ternatives: including exponential, gamma, normal, lognormal, logistic,
loglogistic, Laplace and Pearson 5 distribution. This study’s distribution
fitting was performed using @RISK (Palisade, 2017) with Akaike In-
formation Criterion (AIC) as the criterion for goodness of fit; according
to fitting results, lognormal is the best fit to our duration data (as shown
below in Fig. 6). Toledo and Zohar (2007) and Hetrick (1997) also
found lognormal distribution the best fit for exploring normal lane
change distribution, in their case by using proper probability density

Fig. 5. Minimum TTC on different road types.

Table 4
Turn signal usage for different road types.

Road Type Used (# of
events)

Not Used (# of
events)

Usage Percentage

Surface Road 489 549 47.1
Freeway 811 858 49.3
Expressway 1,432 1,469 48.6
All Road Types 2,732 2,876 48.7
Comparisons
Olsen et al.’s study on interstates and freeways, U.S. (forced LC

situations)
44.0

Lee & Olsen’s study on interstates and freeways, U.S. (urgent LC
situations)

53.3

Dang’s study on highways, China (normal LC situations) 65.0
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functions (PDF) to fit the data. The PDF of lognormal distribution is
shown below:

=f x µ
x

x µ( | , ) 1
2

exp (ln )
2

2

2 (1)

where, µ and are the lognormal mean value and variance, respec-
tively, which can be calculated by sample mean (m) and sample var-
iance (var).

=
+

=
+

µ m
var m

var
m

ln ln
1

2
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This study’s results showed that μ=1.174 and σ=0.517, which
differ slightly from the results of Toledo and Zohar (2007). In their
study, a total of 1790 successful lane changes (on average, in the range
of 5 to 6 s) were identified, and lognormal distribution was re-
commended with two parameters μ=1.376 and σ=0.550. Cut-in
maneuvers differ from normal lane change in their shorter duration,
which average 3.91 s.

4.5. Impact on the following vehicle

One way the impact of lane change on the FV can be analyzed is
through the FV driver’s braking response. The Data Acquisition System
(DAS) in an NDS FV vehicle records the braking timestamp for the brake
pedal position variable. Statistical results showed that 44.0% of FV
drivers brake when the CV initiates its movement but before it crosses
the lane line, while only 14.1% of drivers brake after the CV crosses into
the target lane, and 41.9% do not brake at all. This finding indicates
that most braking behavior occurred when cut-ins were at the initial
stage, when a warning to the driver could improve the FV’s safety. As
most forward collision warning (FCW) systems only focus on the lead
vehicle in the FV’s current lane, the FCW cannot fully meet safety needs,
suggesting a tremendous need to optimize current FCW functions. For
example, the FCW should be capable of perceiving complex interactions
between its vehicle and vehicles in adjacent lanes, which may intend to
execute cut-in or other disruptive maneuvers.
To understand the impact of cut-ins on FV lateral and longitudinal

movements, acceleration and deceleration behavior was assessed. In
Fig. 7(a) positive lateral acceleration denotes movement to the right
from the sensor position, while negative acceleration denotes move-
ment to the left. The larger proportion of negative lateral acceleration
values indicates the FV was more likely to be affected by cut-ins coming
from the right. This seems reasonable, as in right-side driving countries
such as China, a CV would be most likely to make discretionary cut-ins

to the left to avoid slower traffic.
Longitudinal deceleration reflects urgent operation of the FV. As

shown in Fig. 7(b), a majority of the longitudinal deceleration ranged
from −3m/s2 to 0m/s2, indicating that, in most braking-required
events, the FV driver took steps to maintain a safe distance by braking
before the CV entered into its lane. However, a number of drivers
braked more urgently in order to yield quickly to the CV to avoid a
collision. The maximum longitudinal deceleration observed was as high
as −6m/s2, which probably had a negative influence on traffic flow.
Previous studies (Zheng, 2014) have demonstrated that lane changes
are linked to stop-and-go oscillations, and are responsible for trans-
forming subtle oscillations into substantial disturbances.
As much as cut-ins can disrupt traffic flow and safety, however, this

evidence of human drivers’ ability to react to complex interactions
between vehicles, i.e., predict danger and adopt safe, suitable, and
timely strategies, suggests that ADAS and CAVs can learn a similar re-
sponse (Casner et al., 2016). For example, an SAE Level 3 (as defined by
the Society of Automotive Engineers) autonomous vehicle should be
able to make appropriate decisions and maintain steady control of the
vehicle when it recognizes the surrounding vehicles’ intentions.

5. Modeling cut-in gap acceptance

5.1. Cut-in gap acceptance characteristics

Gap acceptance is a particularly important characteristic of cut-in
behavior. A driver considering a cut-in considers safety as well as speed
and convenience; determining whether or not a target gap is safe en-
ough to accept is a vital element of the cut-in decision-making process.
CV drivers assess the gaps between their own vehicle and both the LV
and the FV, i.e., the lead gap and lag gap, respectively. When drivers
start to execute cut-ins, it can be assumed that they have accepted an
available gap by comparing it to their own critical gap, the smallest gap
that they perceive will ensure a successful lane change. This study ex-
tracted the gap size from the data based on when the CV driver began to
move into the target lane, i.e., the initiation point. Gap size was defined
in terms of time rather than space, using the second as the unit of
measure. Time gaps are a function of spatial distance and speed: be-
cause the CV is concerned with having sufficient time, which is influ-
enced by current speed that can vary, time gaps are more generalizable
representations (Bham, 2009).
As shown in Table 5, the minimum lead and lag gaps were smaller

on freeways than on surface roads and expressways. The maximum lead
gaps show no significant difference by road type; however, the max-
imum lag gap is again smaller on freeways, likely due to the higher

Fig. 6. Distribution of best fits to cut-in duration (lognormal).
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speed limits on freeways.
The averaged lead and lag gaps on surface roads are largest, fol-

lowed by expressways and then freeways; a statistically significant
difference between the averaged values (P-Value< 0.05) was con-
firmed by T-test. The standard deviations of lead and lag gaps are lar-
gest on surface roads, which can likely be attributed to inconsistency
resulting from interactions with buses, bicycles, pedestrians and other
road users.
Gap acceptance is also influenced by motivation. As shown by the

mean values in Table 5, drivers accepted smaller gaps for mandatory
cut-ins than for discretionary cut-ins. These smaller gaps are consistent
with the definition of mandatory cut-ins, which are executed in more
urgent situations, e.g., to avoid an obstacle or make a needed turn.
These results suggests that, for applications such as ADAS, simulated
gap acceptance thresholds should be set to accommodate different
motivations.

5.2. Three-level mixed-effects linear regression model

Because it is assumed that gap acceptance depends on the specific
driving scenario, gap acceptance is often modeled as a random variable
to capture the variation in driver behavior and environment. For in-
stance, a driver avoiding an obstacle may accept a short minimum gap,
whereas a driver who intends to enter a fast lane for speed preference

may wait for a larger gap. A gap acceptance model should therefore be
capable of cut-in decision-making mechanism.
The mixed-effects linear regression model is a widely used method

for empirical analysis that addresses this need. The model can be used
to analyze unbalanced longitudinal data, where individuals may be
measured at different time points, or even at different numbers of time
points. For instance, lead gaps are nested within motivations (manda-
tory and discretionary) and motivations are further nested within road
type. Moreover, lead gaps within mandatory cut-ins may have some
similarities, i.e., within-cluster correlation. On the other hand, there
might be variation between lead gaps due to different motivations and/
or road types, i.e., between-cluster variation. Therefore, a statistical
model is needed that can jointly control both within- and between-
cluster variations. In this hierarchical model, a specific available gap is
assumed to be influenced by variables from all three levels (Deligianni
et al., 2017).
Formally, a three-level mixed-effects model can be written as:

= + + +X Z u Z uyjk jk jk k jk k jk
(3) (3) (2) (2)

(3)

For = …i n1, , jk first-level observations nested within = …j M1, , k
second-level groups, which are nested within = …k M1, , third-level
groups, Groups j k, consist ofnjk observations, soyjk, Xjk, and jk each
have row dimension njk. Zjk

(3) is the ×n qjk 3 design matrix for the third-
level random effects uk

(3), and Zjk
(2)is the ×n qjk 2 design matrix for the

Fig. 7. Cut-in impact on following vehicle: (a) Lateral; (b) Longitudinal.

Table 5
Descriptive statistics of lead and lag gap (unit: s).

Statistics Gap Road Type Motivation

Surface Roads Expressways Freeways Mandatory Discretionary

Sample Size Lead 834 2,262 1,120 859 3,357
Lag 1038 2,901 1,669 1,209 4,399

Min Lead 0.16 0.14 0.13 0.13 0.14
Lag 0.17 0.15 0.12 0.12 0.15

Max Lead 5.91 5.98 5.95 5.98 5.98
Lag 5.96 5.77 5.59 5.59 5.76

Mean Lead 1.82 1.49 1.42 1.45 1.68
Lag 1.81 1.38 1.25 1.57 1.71

Std. Dev Lead 1.16 0.90 0.91 1.18 0.95
Lag 1.07 0.86 0.88 1.02 0.86
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second-level random effects ujk
(2). Furthermore, assume that

u N u N N I(0, 3) (0, 2) (0, )k jk jk
(3) (2) 2

(4)

and that uk
(3), ujk

(2), and jk are independent (Stata, 2013).
In this gap acceptance model, first-level refers to event observations

(i.e., lead and lag gaps), second-level refers to motivation (mandatory
or discretionary), and third-level refers to road type. Therefore, to ac-
commodate both lead gaps and lag gaps, event observations were di-
vided into six groups. The independent variables are listed in Table 6,
and include traffic and environmental factors (e.g., traffic density,
weather and light conditions), vehicle type (e.g., heavy or light ve-
hicles), and kinematic parameters (e.g., relative speed, acceleration).
The dependent variable is the lead or lag gap for event i, motivation j
and roadway k. Parameters of all components were estimated using
Stata® 13 (Stata, 2013).
Traffic density was determined by analyzing DAS and forward video

data, and was divided into three states of high, medium, and low
density. The inter-vehicle spacing is large in the low-density state,
which is defined by this study as traffic moving at a relatively fast speed
(more than two thirds of the speed limit) with 1˜2 vehicles traveling in
the proximity and same direction as the NDS following vehicle. Medium
density is defined as traffic moving at moderate speed (one to two
thirds of the speed limit) with 3˜5 vehicles in proximity to the FV, and
high density is indicated by slow speeds (less than one third of the
speed limit) with more than 5 vehicles in proximity. Cut-in vehicle type
is separated into heavy (e.g., large passenger vehicles and large trucks)
and light vehicles (e.g., small passenger vehicles and small trucks).
The estimation results of the proposed three-level mixed-effects

models for lead and lag gap are shown in Table 6. As expected, both
random effects parameters associated with cut-in motivation and road
type were significant (the 95% confidence interval does not include
zero). These results confirm our assumption that lead and lag gaps vary
with motivation as well as road type, and demonstrate that the three-
level model can capture these characteristics of gap acceptance.

All independent variables were significant at the 95% confidence
level (P-Value<0.05 indicating the coefficient is significant). These
environmental conditions, vehicle type, and kinematic parameters are
the most important factors influencing the cut-in vehicle’s gap accep-
tance (Toledo et al., 2003; Choudhury and Farheen, 2005). Results
show that acceptable lead and lag gaps decreased with the increase in
traffic density (note the negative coefficients). It seems reasonable that
heavy traffic with short headways results in frequent interactions be-
tween vehicles, situations in which drivers have to accept smaller gaps
rather than waiting for better opportunities. Bad weather (e.g., rainy
days) and the lack of sunlight (i.e., nighttime) led to larger cut-in gaps,
as shown by their positive coefficients. Drivers cutting in to the adjacent
lane in these unfavorable conditions appear to be less willing to take
risks by accepting insufficient headways, even when faced with urgent
situations.
Acceptable lead gaps are significantly affected by the type of vehicle

cutting in. The positive coefficient for heavy vehicles indicates these
drivers are more cautious; they seem aware that their vehicle needs
more time to execute a cut-in that will avoid a rear-end crash with the
lead vehicle. Unlike lead gap, lag gap is not significantly impacted by
the CV type, possibly because drivers may be more concerned with the
scenario in front than to the rear.
The kinematic parameters are critical elements in cut-in gap ac-

ceptance. CV acceleration (unit: m/s2) has different effects on lead gap
and lag gap, i.e., the size of the acceptable lead gap increases with an
increase in CV acceleration, while the lag gap decreases. The CV has
likely begun to accelerate for the purpose of creating a sufficient lag gap
in which to execute the cut-in, but then the driver’s attention shifts to
the road ahead (as seems the case in CV type influencing lead but not
lag gap). It makes sense that the CV’s increasing speed intensifies the
driver’s need for a larger space in front, while the same acceleration
naturally reduces the lag gap as the driver moves away from the FV.
Relative speed (unit: m/s) has similar opposing effects on lead and

lag gaps. Relative speed, which refers to LV/FV speed minus CV speed,

Table 6
Three-level mixed-effects linear regression models for lead and lag gaps.

Dependent variable Lead Gap Model Lag Gap Model

Fixed effect Coefficient t-stat Pr > |t| Coefficient t-stat Pr > |t|
Traffic density:
High −0.2348 −2.61 0.009 −0.2349 −3.45 0.001
Medium −0.1465 −2.62 0.009 −0.2341 −5.51 0.000
Low (Reference)
Weather condition:
Rainy 0.1286 2.26 0.024 0.1142 2.64 0.008
Sunny (Reference)
Light condition:
Nighttime 0.1960 4.86 0.000 0.0823 2.69 0.007
Daytime (Reference)
CV type:
Heavy vehicle 0.3214 3.50 0.000 – – –
Light vehicle (Reference)
CV acceleration 0.1082 5.14 0.000 −0.0564 −3.53 0.000
Relative speed V V( )LV LCV 0.0386 4.85 0.000 −0.0331 −5.12 0.000
LV acceleration −0.0792 −4.60 0.000 – – –
Relative speed V V( )FV LCV −0.0831 −8.22 0.000 0.0647 8.84 0.000
FV acceleration −0.0723 −3.21 0.001 0.0509 3.01 0.000
Intercept 2.3842 15.21 0.000 0.1094 12.66 0.000
Random effect parameters Estimate 95% Conf. Interval Estimate 95% Conf. Interval
Variance of cut-in motivation

Reference: Discretionary
0.0578 [0.0043, 0.7708] 0.0964 [0.0271, 0.3433]

Variance of road type
Reference: Surface Roads

0.1038 [0.0408, 0.2642] 0.7593 [0.0319, 0.1806]

Variance of Residual 1.0578 0.8852
LR test vs. linear regression 2 =22.92, Prob > 2 =0.0000 2 =56.37, Prob > 2 =0.0000
Statistics
Number of observations 4216 5608
Number of groups 6 6
Log-likelihood −5464.3586 −6918.8843
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is a more revealing parameter than absolute speed because it can
eliminate the effect of speed difference based on road type. Results
showed that the higher the LV speed in comparison to the CV, the lead
gap increased as the lag gap decreased. However, when the FV’s speed
increased in comparison to the CV, the lead gap decreased while the lag
gap increased. As few drivers risk entering a gap that appears to be
closing due to a fast FV, the minimum safe gap between those vehicles
must be perceived as larger. Supporting this interpretation, the LV and
FV acceleration variables affect gap acceptance similar to the effect of
relative speed; that is, LV acceleration increased the lead gap while FV
acceleration increased the lag gap. These results are consistent with
Toledo et al. (2003), who found that the CV’s critical gap depends on its
relative speed to the lead and following vehicles.

6. Summary and conclusion

This study explored drivers’ cut-in behavior in Shanghai, China, by
developing an innovative algorithm to extract 5608 cut-in events from
the Shanghai Naturalistic Driving Study database. Cut-in character-
istics, including duration, drivers’ motivations, turn signal usage, and
urgency were analyzed comprehensively to acquire a broad view of
Chinese driving behavior.
Almost half of Chinese drivers do not use a turn signal when cutting-

in. Although this proportion is similar to that of U.S. drivers, according
to a 1992 study by Daimler-Benz, if a passenger car driver has 0.5 s
additional warning time, about 60% of rear-end collisions can be pre-
vented; and an extra full second of warning time can prevent about 90%
(National Transportation Safety Board, 2001). The use of turn signals
provides this warning, making it not only a responsible safety precau-
tion for drivers themselves, but also a sign of respect for others’ safety,
especially occupants of following vehicles. Shanghai traffic police re-
ported in 2016 that improper lane changes, especially without using
turn signal, accounted for almost 50% of all traffic violations, which our
figures confirm. Since 2016, Shanghai has launched a campaign to
enforce traffic violations. As Faw (2013) notes, we might have no
technological means of ensuring appropriate turn signal use, so gaining
a clear understanding of why drivers do or do not use their turn signals
remains a valuable pursuit. One intervention that might raise the rate of
turn signal use is to post reminders such as “Signal before lane chan-
ging” on some of the many variable highway signs. Traffic police should
issue tickets or citations to drivers who do not signal when cutting in. In
addition, strengthened driver education would emphasize the essential
role that signaling plays in promoting safety, both for individual drivers
and for the larger community of road users.
A lognormal distribution produced the best fit for cut-in duration

data. Cut-ins have shorter duration than other lane changes, which is
likely the result their significantly higher degree of urgency, as de-
monstrated by our time to collision (TTC) calculations. The shorter
duration and TTC increase the cut-in’s riskiness: because drivers tend to
execute cut-in maneuvers hastily, they are more accepting of gaps that
may normally be rejected; additionally, their attention to the lag gap
decreases, leading them to be less aware of the potentially dangerous
impact on following vehicles. Quantifying cut-in duration is important
to microsimulation as well. Current microsimulations generally con-
sider lane change duration as near-instantaneous or assign it a constant
value, yet duration has considerable range, which can have strong
impact on the simulated scenario.
This study’s descriptive statistics confirmed that a driver’s decision

to cut in is influenced by road type and motivation. With the aim of
identifying the variables influencing the cut-in decision-making pro-
cess, two three-level mixed-effects linear models were developed to
capture the characteristics of lead and lag gap acceptance. The models
demonstrated that traffic density, weather, light conditions, CV vehicle
type, relative speed to LV/FV and acceleration of CV, LV and FV all had
significant effects on the decision to cut in to an adjacent lane. Because
the models offer general insight into driver decision-making when

interacting with multiple vehicles, they can assist the evaluation and
improvement of active safety functions in driving simulators and con-
nected and autonomous vehicles (CAV). One of the most important
applications of the findings is that gap acceptance thresholds should be
set according to a variety of conditions. More specifically, road type and
motivation parameters can be used to simulate cut-in trajectories in
different scenarios.
Motivation has significant influence on cut-in behavior. More than

half of cut-ins are correlated with a slow preceding vehicle, which
confirms the common understanding that drivers are motivated to
maintain a desired speed. These discretionary cut-ins are more common
on freeways and expressways than they are on surface roads, which
suggests that these roads may give drivers more opportunity to cut in
because they are larger, faster, and have limited access. It is worth
mentioning that a relatively large number of Chinese drivers cut-in
without any clearly observable intention (3.7% of cut-in events in this
study). Generally speaking, drivers of following vehicles can often an-
ticipate cut-ins when, for example, they see a particularly slow vehicle
in the adjacent lane. However, because it is much more difficult to
predict cut-in maneuvers without clear intention, these cut-ins may
have a particularly negative influence on traffic flow and safety. When
this apparently random cut-in behavior is considered along with
Chinese drivers’ shorter headway, the low percentage of turn signal
usage, and the overall high rate of lane change behavior (Wang and Li,
2016), the possibility that these behaviors indicate poor driving habits
and an aggressive driving style warrants further research.
This paper also addressed the impact of cut-ins on the following

vehicle by analyzing its braking response and acceleration behavior.
The finding that 44.0% of FV drivers decelerate to yield to a CV when it
initiates cut-in movement from an adjacent lane indicates that ad-
vanced driver assistance systems, such as forward collision warning,
must consider the movement of vehicles in adjacent lanes as well as
those the driver’s own lane. On the positive side, this study found that
human drivers were able to avoid crashes in a variety of complicated
cut-in interactions, which supports suggestions that human drivers’
decision-making processes could be employed as a set of guidelines for
vehicle automation systems to ensure that they act in a manner con-
sistent with human-driven vehicles (Radlmayr et al., 2018). Future
CAVs control systems, for example, can incorporate these findings in
anticipating and responding to cut-in vehicles.
Since the cut-in process is complex, future study should address

other variables, such as roadway geometry, vehicle performance cap-
abilities, and the influence of driver psychology on decision-making and
driving style. Nevertheless, this paper extends the exploration and de-
velopment of lane change theory, methodology, and applications, to
focus on the more dangerous cut-ins, and can provide a valuable re-
ference for further research.
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