W) Check for updates

Article

Transportation Research Record

1-8

© National Academy of Sciences:
Transportation Research Board 2018
Reprints and permissions:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0361198118790328
journals.sagepub.com/homef/trr

®SAGE

Bicycling Simulator Calibration:
Proposed Framework

Dylan Horne', Masoud Ghodrat Abadi', and David S. Hurwitz'

Abstract

Bicycling simulation allows for the low-risk experimental study of human factors within transportation environments. A
cyclist pedals on a stationary bike trainer, which is instrumented to detect the speed of the wheel and the steering angle of
the bicycle. This paper proposes a speed calibration procedure to increase the validity of the simulator results, by using an
independent bicycle computer for comparing the simulator speed. The speed ratio, defined as the simulator speed divided by
the bike computer speed, approaches one when the simulator is properly calibrated. The effect of tire pressure was analyzed
by examining the speed ratio for various tire pressures. The optimal tire pressure was selected as the one that provided a
speed ratio closest to one when all other factors were held constant. In the final calibration, a gain factor was used to modify
the simulator speed calculation that was embedded in the simulator’s bicycle dynamics model. Following calibration, the final
simulation speed was within 99.5% of the bicycle computer speed, indicating that the physical speed of the wheel was accu-
rately modeled in the simulation environment. The calibration procedure uses general equations and techniques that can be
applied to other bicycling simulators to calibrate speed measurements and improve the consistency of experimental data

worldwide.

Bicycling simulation allows for the careful examination
of bicyclist behaviors and interactions with various ele-
ments in the built environment in a controlled experi-
mental setting. Novel or existing infrastructure can be
analyzed to determine the effectiveness of traffic control
devices. Interactions between conflicting modes of travel
can be evaluated with surrogate safety measures to
understand crash risk. The controlled and repeatable
nature of human-in-the-loop simulator experimentation
provides a means to develop explanatory mechanisms
for transportation user behavior, which is difficult to
extract from naturalistic experiments (/). The virtual
reality environment significantly reduces the risk for par-
ticipants, who can be exposed to risky scenarios while
avoiding potential harm (2).

The ability to extrapolate conclusions from simulation
studies to real-world practice requires that the simulation
and real-world performances be matched. Thus, calibra-
tion, measurement accuracy, and validation must be
given careful attention. Simulated environments may not
yet be able to emulate every nuance of real-world experi-
ences, but they are sufficient to create environments in
which user responses are similar to those they give in the
real world (/). Thus, these simulations include relative
validity—meaning that users respond in the same direc-
tion as in the real world—but do not include absolute

validity—meaning that the simulation response is not yet
identical to the real-world response in both magnitude
and direction (2). In fact, reducing some of the variabil-
ity that is experienced in the real world contributes to the
power of simulation in controlled experiments, as almost
all environmental factors are administered. However,
because of the limited number of bicycle simulators
worldwide, results from such simulators have been con-
sidered less rigorous than similar results from the com-
paratively more mature field of driving simulation (3).
The Oregon State University Bicycle Simulator is the
focus of this calibration effort, although the procedure
could be applied to other bicycling simulators (Figure 1).
The simulator uses SimCreator (Realtime Technologies
Inc.) as the simulation software package, which manages
the vehicle dynamics and visual field. For the bicycle
simulation, the vehicle dynamics are modified to create a
vehicle that has the characteristics of a bicycle. The user’s
vehicle has a narrower, shorter wheelbase and reduced
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Figure |. Calibrated Oregon State bicycle simulator.

speed to emulate the performance of a bicycle. The simu-
lator has two input devices: a cradle for the front wheel
to capture the steering angle, and an instrumented sta-
tionary bike trainer to capture the speed of the bicycle
(Figure 2). The visual field is projected on a screen in
front of the cyclist, and a surround sound system pro-
vides audio. The platform is adjustable for various
bicycle sizes, including a children’s bike.

Methodology

Calibrating the wheel speed input between real-world
and virtual bicycling will increase the validity of the bicy-
cling simulator. Wheel speed was calibrated through an
independent bike computer (Figure 2), which calculated
the physical speed of the wheel based on the wheel size
and a spinning magnet attached to a spoke (Figure 3).
The physical speed of the wheel was transferred through
the bike trainer onto a rotational sensor, which
the bicycle simulator used to calculate the simulation
speed.

Speed data from the bike computer were exported
and compared with the speed data recorded by the simu-
lation computer (Figure 4). Two factors, gain and tire
pressure, were investigated to understand the operational
interface between the bicycle and the simulator. The gain
factor, embedded in the vehicle dynamics package in the
simulation software, was used to calculate the wheel
speed based on the angular speed from the rotation sen-
sor input. The gain factor can be defined by the operator
and used to calibrate the simulated speed measurement.

Figure 2. Bicycle computer used to collect the physical speed of
the wheel.

The interface between the tire and the bike trainer
effected the transfer of motion from the wheel and the
input device to the computer. The tire pressure and tight-
ness of the bike trainer on the tire are related to the
amount of friction or rolling resistance. If the rolling
resistance is too low, the tire will slip past the trainer,
especially if the cyclist is exerting high torque. Previous
research on bicycle tire pressure has found an
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Figure 3. Wheel speed calibration diagram.

inconsistent relationship between tire pressure and roll-
ing resistance, with tire diameter being a better indicator
of rolling resistance (4).

Various tire pressures between 40 and 60 pounds per
square inch (psi) were tested with one cyclist using con-
sistent gearing to determine the effect of tire pressure on
speed measurements. The manufacturer’s recommended
tire pressure for the bicycle was 50-60 psi. Higher pres-
sure was expected to reduce slip, decreasing the variance
of the simulation measurement. Equation 1 shows how
the tire pressure factor and gain factor influence the
simulated speed measurement.

Speedsim = Speedwheer * Tire Pressure Factor * Gain Factor
(1)

where

Speedsin, is the observed wheel speed calculated from
the simulation;

Speedwneel 1s the actual speed of the physical wheel;

Tire Pressure Factor accounts for losses caused by the
tire/bike trainer interface; and

Gain Factor is a variable in the simulation for speed
calibration.

Equation 2 shows the relationship between the bike
computer and the wheel speed, where Speedpike Computer 18
the speed recorded by the bike computer.

SpeedBike Computer ~ SpeedWheel (2>

The goal was to minimize the difference between speed
observations. Speed measurements of the bike computer

and the simulator were converted to common units
(mph), and the delta speed was calculated as the differ-
ence between the simulation speed and the bike com-
puter measured speed, as

ASpeed = SpeedSim - SpeedBikeCOmputer (3)

To account for variations in the magnitudes of speed
measurements, a ratio of the two speed measurements
was used (Equation 4). The bike computer speed, which
directly represents the wheel speed, was used as the
denominator. Ratio values greater than one indicate
overestimates of bike speed, whereas values less than one
indicate underestimates. Calibration occurs as the speed
ratio approaches one.

SpeedSim

Speed Ratio = (4)

Speedpike Computer

The simulation computer collects data during the
whole simulation, but the bike computer only collects
data while the rear bicycle wheel is moving. At the
startup and termination of the simulation, several sec-
onds of data are collected that do not have corresponding
bike computer data. The time series for the simulation
was trimmed to make it equal to the time series of the
bike computer (Equation 5). A similar process was used
to trim the end of simulation data by removing all zero-
speed data recorded during simulation shut down.

Sim TimeModiﬁed = Sim TimeOrigiml

5
— Time Step of First Non Zero Speed ®)
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Figure 4. Flowchart of the comparison of two speed measurements.

The time intervals must be set to the same frequency.
Instead of aggregating the higher-frequency simulation
data, the bike computer data were disaggregated to
match the higher frequency of the simulation computer.
Each of the time intervals was rounded to the tenths
place, and then the corresponding bike computer speed
was matched to each time step. Under this framework,
each bike computer speed corresponded to around 850
simulation speed measurements. This disparity in data
resolution resulted in error, especially following large
changes in speed. For example, when a participant
stopped for a traffic signal in the simulation, the bike
computer data were slow to respond to the change in
speed, and then again slow to respond to the acceleration
on the green indication. A potential improvement would
be to use a geometric estimate of the higher resolution
speeds based on the current and next bicycle computer
speed measurements, as shown by

Speedgy = m(x — xo) + yo
_ Speed, + 1 — Speed,
Time, + | — Time,

* (Timegg, — Time,) + Speed,
(6)

where

Speedgs; is the estimated speed in the high-resolution
interval;

Speed,, is the previous speed measurement (from the
bike computer);

Speed,, + | is the next speed measurement;

Timegg; is the high-resolution interval;

Time, is the previously measured interval (from the
bike computer); and

Time, + ; is the next measured interval.

Inversely, the simulation data could be aggregated by
using a moving average or a Kalman filter, to remove

much of the noise and decrease the computational effort.
These methods create a local average based on nearby
data points, reducing data variability caused by short-
term fluctuations, while maintaining the general trend of
the data. A moving average formula is shown by

SpeedMA = SpeedPrevious MA

Sp eedCurrent Interval . SpeedPrevious Interval (7)
n n

+

where
Speedma is the simple moving average speed estimate;
Speedcurrent Interval 1S the simulation speed measurement
at current time; and
n is the number of intervals included in the average.

Results

A graphical comparison of the two speed measurements
was used to check the initial alignment of the data, as
shown in Figure 5. Large variance between speeds fol-
lowed large changes of speed because of the large differ-
ence in sampling rate, as evident around the 16,000th
step when the participant stopped the bicycle. The much
higher data resolution for the simulation contributed to
some of the noise in the simulator speed. However, in
general, the speeds followed the same trends. In Figure 5,
the noise in the simulation speeds indicates that the sys-
tem does occasionally over- or underestimate the speed
for short durations. These events are typically very short,
as the simulator records data at 85 Hz.

Tire Pressure

One participant rode the bicycle simulator while data on
tire pressure were collected. In general, the ride was at
least 5 min long using the same gearing for each run.
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Figure 5. Comparison of speed data from typical participant.

Figure 6. Digital tire pressure gauge during tire pressure analysis.

The tire pressure of the rear tire was set at 40 psi and
increased by 5 psi increments up to 60 psi. A digital tire
pressure gauge was used to ensure accurate pressure
measurements, as shown in Figure 6.

Figure 7 shows the distribution of speed ratios for
each tire pressure. A speed ratio of one indicates that the
bike computer speed and the simulator speed were per-
fectly calibrated. The high variance for the 40 and 55 psi
data was caused by the low bike computer speeds during
the startup and termination portions of the run. During
these 10-s intervals, the bike computer speed was much
lower than the simulation speed, resulting in large speed
ratios. Although the speed ratio means were similar, an
analysis of variance (ANOVA) test indicated that they

were statistically different (F value 1165.75, P < 0.000).
A Tukey honest significant difference (HSD) test was
used for multiple comparisons of the tire pressure, with
all pairs except 45 and 50 psi (P = 0.711) being statisti-
cally different. This result indicates that tire pressure had
a statistically significant influence on the speed ratio.

Descriptive statistics for the various tire pressure speed
ratios are shown in Table 1. The speed ratios indicate the
relative difference in measured speeds. For example, with
a tire pressure of 40 psi and a bike computer speed of 10
mph, the simulator speed mean would be 13.49 mph. The
lowest speed ratio corresponded to 40 psi, indicating that
the simulator and bike computer were most calibrated at
this tire pressure.

Gain Factor

Various gain factor settings were tested to analyze the
effect of the gain factor on simulator speed. A single par-
ticipant rode for 300 s at each setting, using the same
gearing and tire pressure for all runs. The participant
pedaled the bike to a steady-state speed before the simu-
lation began to minimize variance during the startup
period. The steady-state speed was maintained through
the end of the simulation to reduce variance further.

Tire pressure was set to 60 psi during the gain factor
analysis. This tire pressure is not the optimal tire pressure
determined in the tire pressure experiment. Both data sets
were collected before the data were analyzed, and it was
incorrectly assumed that the higher tire pressure would
reduce the slip the most. The factors were tested indepen-
dently, however, and it is not expected that a significant
interaction between the factors exists, as one is a physical
relationship and the other is a software setting. The final
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Figure 7. Distribution of speed ratios for each tire pressure.

Table 1. Descriptive Statistics for Various Tire Pressure Speed Ratios

95% ClI

Tire pressure N Speed ratio mean SD SE Lower Upper Min Max
40 35,375 1.349 0.0869 0.000462 1.349 1.350 0.1233 2.757
45 47,882 1.368 0.0990 0.000452 1.367 1.369 0.0975 1.998
50 39,332 1.369 0.0772 0.000389 1.368 1.370 0.0841 1.567
55 32,220 1.420 0.2854 0.001590 1.417 1.424 0.1846 3.626
60 34,964 1.380 0.0831 0.000444 1.379 1.381 0.0914 1.549
Total 189,773 1.376 0.1439 0.000330 1.375 1.376 0.0841 3.626
Note: SD = standard deviation; SE = standard error; Cl = confidence interval; Min = minimum; Max = Maximum.
Table 2. Gain Factor Settings and Speed Ratio Descriptive Statistics for Each Simulation Run

95% ClI
Gain factor N Speed ratio mean SD SE Lower Upper Min Max
0 23,487 —3.1E-7 3.44E-5 2.25E-7 —7.5E-7 1.29E-7 —0.003 0.002
0.1 22,556 0.995 0.140 0.00093 0.993 0.996 —6.88E-7 1.275
0.1 22,837 0.975 0.126 0.00084 0.973 0.976 —2.43E-8 1.252
Default* 22,147 1.585 0.194 0.00130 1.582 1.587 —8.12E-9 1.894
0.2 21,651 2.070 0.244 0.00166 2.066 2.073 —2.26E-8 2.391
I 23,487 8.190 3.191 0.02082 8.149 8230 —9.454 11.792
Total 136,165 2.328 3.056 0.00828 2311 2.344 —9.454 11.792

Note: SD = standard deviation; SE = standard error; Cl = confidence interval; Min = minimum; Max = Maximum.

“Default gain factor is 0.15707963267949.

calibration using 40 psi should be even more accurate
than described here.

Table 2 shows the various gain factor levels and
descriptive statistics for each of the runs. An ANOVA
analysis indicated that the differences between gain fac-
tors were statistically significant (F value = 115845, P <

0.000). A Tukey HSD test indicated that each of the fac-
tors was significantly different except for the two 0.1
runs. The slightly different speed ratios with the same
gain factor of 0.1 were evidence of random system varia-
bility. Setting the gain factor to zero reduced the simula-
tion speed of the bicycle to zero, and setting the gain
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observation from a bike computer to minimize the differ-
1o ence between measurements. Calibrating the observed

Mean of Speed Ratio

0 0.1 0.1 Default 0.2 1
Gain Factor

Figure 8. Speed ratios for each gain factor (speed ratio of one
corresponds to proper calibration).

factor to one dramatically increased the simulation speed
of the bike (8.19 times faster than the real speed of the
wheel). With a gain factor of one, the simulated bike
would reach speeds of 65 mph, and then become unstable
and crash with any steering input. Setting the gain factor
to 0.1 produced the most calibrated results, with the
simulated speed within 97.5% to 99.5% of the bike com-
puter speed.

Figure 8 graphically shows how the gain factor relates
to the speed ratio from the data in Table 2. The X-axis
shows the values that were tested during the sensitivity
experiment, which should be interpreted as categorical
variables. Theoretically, any speed ratio could be
achieved by adjusting the gain factor; therefore, a solid
line was used between the data points. The target value
was a speed ratio of one, as this was the indicator of
good calibration. During the experiment, the gain factor
was adjusted following the principles of Newton’s
Method, adjusting the value in an iterative fashion to
approach the goal of a speed ratio of one. Additional
steps could have been performed (0.095 or 0.15), but
99.5% was determined to be acceptable for demonstra-
tion purposes.

Conclusions

Bicycle simulator studies provide an experimental frame-
work to evaluate novel and existing infrastructure and
human factors while controlling for environmental fac-
tors and reducing risk to participants. Calibrating the
inputs of the bicycle simulator improves the authenticity
of the user experience. The calculated speed of the rear
wheel was compared with an independent speed

simulator speed and the actual speed of the bicycle wheel
should make the simulation more representative of real
cycling, thereby improving the user’s experience and the
applicability of the results.

The speed ratio, or the simulated speed divided by the
bike computer speed, was used to evaluate the influences
of tire pressure and gain factor. Various tire pressures
were tested based on the manufacturer’s recommended
tire pressure range, with 40 psi having the most accurate
and statistically significant speed ratio measurement. A
gain factor of 0.1 brought the simulation to within 99.5%
of the bike computer speed, indicating good calibration.
The calibration could be further improved by additional
refinement after testing tire pressures outside of the man-
ufacturer’s recommendations and additional gain factor
settings.

The general procedure describe here can be applied to
other bicycling simulators around the world. The use of
a commercially available bike computer allows for the
comparison of simulator speeds against an independent
speed measurement. The calibration of speed measure-
ments could increase the repeatability of experimental
data across different simulators. The speed ratio frame-
work enables discussion of the difference between the
real speed of the bike and the simulated speed, which is
especially important when validating simulator results to
real-world experiences.

Future Research

The experiment as described only explored the steady-
state speed, to minimize speed variance. Evaluating
acceleration or deceleration would be difficult using the
current bike computer because of data resolution, as the
system only records data every 10 seconds. Acceleration
events are likely to be much shorter than this interval.
Deceleration events are a potential performance measure
during experimentation, as they reflect braking as a
response to simulated conflicts. These events could be
used as a measure of reaction time, specifically involving
stopping situations. The calibration effort only focused
on speed, but speed is a fundamental property of any
human-in-the-loop simulator.

This research creates a standard procedure for bicycle
simulator speed calibration. Applying this methodology
to other bicycle simulations will help to improve fidelity
of bicycling simulation in general, as speed measurements
will have a common calibration procedure. The future of
this research thread includes applying this procedure to
other bicycle simulators, developing a procedure to ana-
lyze the calibration of steering input through observation
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of visual latency, and validation studies to match simula-
tor performance to field experiments.

Future research for validation of the simulator will
help to answer questions about the human perception of
the simulation. The focus of this research was to calibrate
the calculated speed of the simulator to a physical mea-
surement of the speed of the wheel, rather than to cali-
brate the human perception of speed. The implication is
that a calibrated simulator will better emulate the real-
world experience. However, because of the relative valid-
ity of simulation research, the participant’s perception of
the simulation speed is arguably at least as important, if
not more so. Because of the limits of what sensor infor-
mation can be presented in a simulator environment, the
simulator may seem much faster or slower to participants
than the real-world experience. Therefore, a study of user
perceptions of bicycling simulation should be performed
with the research question, “Does the bicycle simulator
match user expectations from riding a real bicycle?” This
feedback mechanism should be used to validate the simu-
lator to match user expectations.
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