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One proposed benefit of automated vehicles (AVs) is their potential to mitigate the occur-
rence of serious crashes due to human error or poor decision making while driving.
However, there are still many concerns associated with the use of SAE Level 3 AVs, which
require intervention by a human driver after a take-over request (TOR). These concerns
intensify when vulnerable road users, such as bicyclists, are introduced to the driving envi-
ronment. The objective of this research was to investigate how human drivers of AVs inter-
act with bicyclists during a right-turn maneuver after receiving a TOR. Changes in driver
performance, including visual attention and crash avoidance behavior, were measured
by using a high-fidelity driving simulator, with 43 participants each completing 18 right-
turn maneuvers. Three independent variables were studied: the bicyclist’s proximity to
the intersection, the driver’s proximity from the intersection when the TOR was received,
and the driver’s engagement in a distracting secondary task (a game on a tablet). In general,
the results showed that the introduction of the secondary task led to decreased driver per-
formance with respect to time-to-collision and the time that it took a driver to first identify
the bicyclist on the roadway. When given more time to react before the intersection, dri-
vers generally had safer interactions with the bicyclist.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Over 94% of serious vehicle crashes are due to human error or poor decision making during driving (NHTSA, 2018). Driver-
assistance systems and automated vehicles (AVs) seek to address some of these safety issues. Many currently used driver-
assistance systems, such as collision warning and avoidance systems, lane-keeping systems, and adaptive cruise control,
have been demonstrated to reduce the incidence of crashes and to improve driver safety (e.g., see Sayer, Bogard,
Buonarosa, LeBlanc, Funkhouser, Bao, & Winkler, 2011). However, there are still many concerns with adding increasingly
complex levels of automation to the driving environment.

The Society of Automotive Engineers (SAE) defines levels of automation on a scale from zero to five. Level 3 (L3: Condi-
tional Automation), Level 4 (L4: High Automation), and Level 5 (L5: Full Automation) allow the AV system to monitor the
environment. However, L3 and L4 have situations where the human driver controls the vehicle, providing numerous human
behavior-related challenges for engineers. For example, at both levels, the driving task must be transitioned away from the
AV to the human driver and, due to the limitations of AV systems, such transitioning could occur unexpectedly. In particular,
under L3 automation, the driver could be required to take control of the vehicle at any moment.
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A report on Waymo AV disengagements listed 63 instances (over 352,000 miles of driving on California public roads)
where a deactivation of the autonomous system occurred when a failure of the technology was detected or when the safe
operation of the vehicle required the autonomous vehicle test driver disengage the autonomous mode and take immediate
manual control of the vehicle (Waymo, , 2017). This low fraction of disengagements (0.2 per 1000 miles) was a fourth of the
rate from 2015. However, 89% of disengagements occurred on urban (nonhighway) streets, highlighting the difficulty of
these complex driving environments. In another example, a Mercedes-Benz AV tested solely on urban roads had more than
336 disengagements during 673 miles of driving, for a rate of nearly one disengagement every 2 miles (Mercedes-Benz,
2016). Given the potential for high disengagement rates and multiple transitions of control, it is important to understand
the human behavioral aspects of automation.

1.1. AV and driving simulation

Laboratory driving simulators offer a safe and controlled environment to examine the human-related factors of driver
behavior. Although some researchers have noted fidelity issues with certain simulation platforms (particularly fixed-base
simulators) in addressing research questions (e.g., De Winter, Stanton, Price, & Mistry, 2016; Neubauer, Matthews, Saxby,
& Langheim, 2010), many others have noted the important benefits of driving simulators (Bellem et al., 2017; Burnett,
Harvey, & Donkor, 2017; Wang et al., 2010). Driving simulators have been specifically validated for evaluating research ques-
tions related to AV driving. Studies showed a strong correlation between L2 AVs and driving simulators with respect to driver
comfort, driver performance during transitions of control, and on-road driver behavior (Bellem et al., 2017; Eriksson, Banks,
& Stanton, 2017).

Numerous driving simulator studies have evaluated the potential for driver distraction and secondary task engagement
when operating an AV. Although AVs are designed to lighten driver cognitive load, distraction and fatigue become prominent
issues with increasing automation. Passive fatigue may result when the driver has a low cognitive load and does not have
direct control over the driving task (Desmond & Hancock, 2001). With increasing vehicle automation, drivers are more likely
to engage in secondary tasks and to look away from the road for extended periods (with no upper limit on how long they will
look away from the road, even when they know automation could fail at any time) (Zeeb, Buchner, & Schrauf, 2015). This
decreased driver vigilance leads to longer take-over times and less safe automated driving, as indicated by slower response
times to critical events (Cunningham & Regan, 2015; Merat, Jamson, Lai, & Carsten, 2012).

1.2. Transitions of control

The importance of research into transitions of AV control cannot be overstated. If the automation of an AV fails unexpect-
edly, almost all drivers will crash. However, a timely warning in the form of a take-over request (TOR) will allowmost drivers
to avoid a collision (De Winter et al., 2016). A major issue associated with TORs is that drivers require time to reengage with
the task of driving after a period of low cognitive load. Research by Louw et al. (2015) and Gold, Damböck, Lorenz, and
Bengler (2013) found that driver reengagement may take as long as 5–7 s. In a driving simulation study in a highway envi-
ronment, Merat et al. (2012) found that drivers took 30–40 s to stabilize their lateral position in response to a randomly
occurring noncritical transition of control. Even when the transition was systematic and predictable, drivers still took nearly
10 s to stabilize their lateral position. Mok, Johns, Lee, Miller, Sirkin, Ive, and Ju (2015) studied the time to transition control
in response to a road hazard (i.e., a construction zone on a curve). Five seconds before the road hazard was sufficient time for
the driver to regain control of the vehicle, whereas 2 s was insufficient. Drivers felt most comfortable when the transition
time between automated and manual driving was 8 s.

1.3. Multimodal conflicts

Bicyclists are extremely vulnerable in the roadway environment. In 2015, there were 840 deaths in the United States due
to crashes between bicyclists and vehicles (FARS, 2017). One of the more prevalent types of vehicle-bicycle crashes is the
right-hook (RH) crash, where a right-turning motorist strikes an adjacent, through-moving bicyclist (Fig. 1.1). In Oregon
between 2007 and 2011, over 59% of all vehicle-bicycle crashes at signalized intersections were RH crashes (Hurwitz,
Monsere, Jannat, Warner, & Razmpa, 2015). A major contributing factor to dangerous RH crash scenarios is a lack of situation
awareness, with most drivers not identifying the bicyclist near the intersection (Jannat, 2014).

Numerous engineering treatments (e.g., signage, pavements markings, geometric designs) have been designed to increase
the visibility of bicyclists at intersections. However, these treatments were created for drivers who are engaged in the driving
task and aware of their surroundings. Such engagement and awareness may not be the case for many AV drivers, as demon-
strated by a recent collision between a self-driving Uber and a pedestrian walking a bicycle across a street in Arizona (Griggs
& Wakabayashi, 2018). Moreover, driving simulation studies of AVs, including those summarized in sections 1.1 and 1.2,
have typically focused on highway driving. Despite the importance of potential interactions between L3 AVs and bicyclists,
few simulation studies have been performed on urban streets or under other conditions where bicyclists are prevalent
(Kyriakidis, Happee, & De Winter, 2015; Kyriakidis et al., 2017). Those studies that do exist typically only address the topic
from the bicyclist’s perspective.



Fig. 1.1. Right-hook crash scenario.
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With research on AVs and human behavior demonstrating reduced driving performance (e.g., Cunningham & Regan,
2015; Merat et al., 2012), AV transitions of control may be important factors in multimodal crashes and safety. However,
more research is needed to quantify the safety implications of L3 AVs, especially in multimodal and urban environments.
This research attempts to address some of these gaps in knowledge by using a driving simulator to evaluate drivers’ visual
attention and collision avoidance while operating an L3 AV.

2. Methodology

A driving simulation experiment was designed to evaluate driver performance related to a right-turning motorist’s visual
attention and crash avoidance behavior. This study was approved by the Oregon State University (OSU) Institutional Review
Board (Study #8329). Two primary tools were used for this experiment: the OSU driving simulator and the Applied Science
Laboratories (ASL) eye-tracking system.

2.1. OSU driving simulator

The full-scale OSU driving simulator is a high-fidelity motion-based simulator comprising a full 2009 Ford Fusion cab
mounted above an electric pitch motion system capable of rotating ±4�. The pitch motion system allows for accurate repre-
sentation of acceleration or deceleration (Swake et al., 2013). Three projectors are used to project a front view of 180� � 40�.
An additional projector displays a rear image for the driver’s center mirror. Two side mirrors have embedded LCD displays.
Ambient sounds around and internal sounds inside the vehicle are modeled with a surround-sound system. The computer
system includes a quad-core host running Realtime Technologies SimCreator Software (Version 3.2) with a 60-Hz graphics
update rate. Fig. 2.1 shows views of the simulated environment created for this experiment from inside (left) and outside
(right) the vehicle.

The driving simulator contains an AV software package, SimDriver V2, controlled by Java Script. Automation can be
turned on by pushing a button on the vehicle’s steering wheel or can be controlled through sensors coded in the virtual envi-
ronment. The center of the vehicle’s instrument panel contains an AV status display (2.5 in. high � 2.5 in. wide), which is
clearly visible to the driver behind the steering wheel.

During the experiment, the vehicle dashboard showed four displays (Fig. 2.2) in the following order, indicating the dif-
ferent states of the AV: Manual Driving, Automation On, TOR, and Automation Off. All images, except for the TOR indication,
were static. The TOR indication was a dynamic image designed to show hands grabbing the steering wheel with a countdown
of 3 s. The TOR indication was accompanied by a beeping alert, based on NHTSA research on auditory alerts in vehicles
(Singer, Lerner, Baldwin, & Traube, 2015). The alert beeped three times and then gave the following verbal guidance to
the driver, depending on which direction they were expected to proceed: ‘‘Take control and continue straight,” ‘‘Take control
and turn left ahead,” or ‘‘Take control and turn right ahead.”



Fig. 2.1. Simulated environment in the OSU driving simulator, from the participant’s perspective inside (left) and from outside (right) the vehicle.

Fig. 2.2. Central dashboard display (Manual, Automation On, TOR, and Automation Off).
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2.1.1. Virtual environment
The environment was designed to replicate a typical urban roadway with a 30-mph speed limit. The roadway cross-

section comprised two 11-foot travel lanes, two 6-foot bikes lanes, and two 7-foot parking lanes, one in each direction
(Fig. 2.3). When present in the environment, a bicyclist traveled at a constant velocity of 16 mph. Higher bicyclist speeds
are more difficult for drivers to project into the future and lead to more dangerous RH crash scenarios at signalized intersec-
tions (Jannat, 2014). Bicyclists and ambient traffic in the environment were coded manually, to ensure that each participant
encountered the same number of vehicles and to limit the number of interactions or conflicts that each participant encoun-
tered. Before beginning the experimental drive, participants completed a 5-minute calibration drive to acclimate them to the
Fig. 2.3. Roadway cross section.
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vehicle mechanics, the virtual environment of the simulator, and the AV characteristics, as well as to determine if they were
prone to simulator sickness.

2.2. Eye tracker

In conjunction with the driving simulator, an eye-tracking system was used to record where participants were looking
while driving in the simulator. Eye-tracking data were collected with the ASL Mobile Eye-XG platform, which allows the user
unconstrained eye and head movements. A 30-Hz sampling rate was used, with an accuracy of 0.5–1.0�. Fixations occur
when the gaze is directed towards a particular location and remains still for some period of time (Green et al., 2007;
Fisher, Rizzo, & Caird, 2011). The ASL Mobile Eye-XG system records a fixation when the participant’s eyes pause in a certain
position for more than 100 ms.

2.3. Independent variables

A factorial design was chosen for this experiment to enable exploration of all three independent variables separately.
Table 2.1 summarizes the independent variables and their associated levels in the factorial design. The experiment included
three independent variables: TOR proximity, relative bicycle position, and secondary task engagement.

TOR proximity was defined by the vehicle position when the TOR was presented to the driver (TOR length remained con-
stant at 3 s). TOR proximity was 5, 10, or 15 s upstream of the stop line on the approach to the intersection.

Relative bicycle position was varied, based on five alpha and beta tests performed by the research team, to induce inter-
actions between the bicycle and vehicle at signalized intersections. A bicyclist was placed relatively closer or farther from the
stop line on the approach to the intersection, to intentionally induce different yielding or overtaking decisions by the driver.
The starting position of the bicyclist was varied based on the TOR proximity, such that the bicyclist only became visible to
the driver 10 s ahead of a TOR. Starting positions were chosen to keep the bicyclist on the same trajectory relative to the
vehicle, regardless of when the driver received the TOR (Fig. 2.4). Prior to 10 s before the TOR, the bicyclist was stationary
behind a parked vehicle and obscured from the driver’s view. The bicyclist closer to the intersection was positioned 20 m
ahead of the bicyclist farther from the intersection. Additional bicyclists were coded into the simulation outside the tested
scenarios, so that drivers would not predict an interaction with a bicyclist.

The final independent variable was participant engagement in a secondary (motor and cognitive) task. The task was a
game developed by Rokni, Tapiro, Parmet, and Oron-Gilad (2017), which involves popping a bubble of a particular color
on a touch-screen device mounted in the cab of the vehicle (Fig. 2.5). The task was intentionally designed to be difficult
and to engage drivers. Playing games is one anticipated secondary task that the promise of automation will bring and, as such,
is a reasonable secondary task to study.

The factorial design resulted in the inclusion of 18 scenarios, which were presented within subjects. Twelve of those sce-
narios included bicycles. To control for practice or carryover effects, the scenario order was partially counterbalanced by uti-
lizing four different tracks, each ranging in length from approximately 3 to 7 min, depending on the driver’s speed and track
length. Each track had four or five right-turn scenarios, with randomly assigned variables. Extra intersections and left turns
were introduced to the track layout so that participants would not anticipate the scenarios at intersections. Scenarios were
separated by 45–90 s of driving in automated mode.

2.4. Dependent variables

Three dependent variables were measured and evaluated through this work. These dependent variables were position
data from the vehicle and bicyclist (used in time-to-collision measurements), the driver’s yielding behavior (whether a driver
chose to yield to the bicyclist at the intersection), and fixation data from the eye-tracking software.
Table 2.1
Experimental variables and levels.

Variable Category Abbreviation Level description

Relative Bicycle Position Discrete No Bike No bicycle
Bike Closer Bicycle closer to stop line
Bike Farther Bicycle farther from stop line

TOR Proximity Discrete 5 s TOR TOR received 5 s from stop line
10 s TOR TOR received 10 s from stop line
15 s TOR TOR received 15 s from stop line

Secondary Task Dichotomous (Categorical) No Game No secondary task
Game Playing the bubble game



Fig. 2.4. Bicycle starting position based on TOR proximity.

Fig. 2.5. OSU researcher demonstrating the bubble game mounted in the vehicle cab.
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2.5. Experimental protocol

Participants were recruited through flyers posted around Corvallis, Oregon and through emails sent to different campus
organizations and email listservs. At the start of the experiment, participants were asked to provide informed consent and
answer a prescreening survey to ensure that they were licensed to drive a motor vehicle for more than 1 year, had good
vision, and were not prone to simulator sickness. The prescreening survey also included demographic questions (i.e., age,
gender, ethnicity, driving experience, highest level of education, and prior experience with driving simulators). After com-
pleting the prescreening survey, participants were introduced to the driving simulator controls. The AV functions and dis-
plays were explained. Participants then completed an approximately 5-min calibration drive. After the experimental
drives, which took approximately 30 min to complete, participants answered a postdrive survey, which included questions
on their experience and their attitude towards automation after the experimental drive.
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2.6. Participant demographics

A total of 46 participants, (23 women, 22 men, 1 preferred not to answer) participated in the simulator study. Only 6.5% of
participants (3 women) reported simulator sickness and did not complete the experiment. All responses recorded from par-
ticipants who reported simulator sickness were excluded from the analyzed dataset. Although it was expected that many
participants would be OSU students, an effort was made to incorporate participants of all ages within the specified range
of 18–75 years. The age of participants ranged from 18 to 74 years (Mage = 30.7, SDage = 15.11).

3. Results

Two measures of driver performance were evaluated: collision avoidance behavior and visual attention. The collision
avoidance behavior of drivers was evaluated based on a driver’s yielding behavior and time-to-collision (TTC) with a bicy-
clist. Visual attention was evaluated based on the driver’s total fixation duration (TFD) on the bicyclist and the driver’s first
fixation on the bicyclist in the roadway.

3.1. Collision avoidance results

To conceptualize the collision avoidance behavior of participants, three time-space diagrams were created, one for each
TOR scenario (Figs. 3.1–3.3). Trajectories were recorded from the centroid of a participant. Trajectories on the plots represent
two different vehicle-bicyclist interactions. Each plot shows two cases, developed based on collected position data: (1) a case
where a participant yielded to a bicyclist, and the bicyclist was farther from the intersection, and (2) a case where a partic-
ipant did not yield to a bicyclist, and the bicyclist was closer to the intersection.

Several important pieces of information can be obtained from these figures. The figures highlight when the bicyclist first
began to move in each TOR scenario, and they demonstrate that the bicyclists remained on a constant trajectory regardless of
the movement of the vehicle. The figures illustrate how long a driver had to decide whether or not to yield to the bicyclist,
and they show the relative position between the driver and the bicyclist at any given time. Finally, the three plots highlight
the different yielding behaviors of participants: for example, some participants accelerated past the bicyclist, whereas others
braked to yield to the bicyclist. In the first two yielding cases, the drivers braked before passing the bicyclist; in the third
case, the driver identified that the bicyclist was behind them and stopped to yield to the bicyclist.

3.1.1. Yielding behavior
Across all 516 cases in the experiment (43 participants in 12 scenarios where a bicyclist was present), drivers yielded to

the bicyclist in 284 instances (56% of cases). Unsurprisingly, most cases of yielding occurred when the bicyclist was relatively
Fig. 3.1. Example time-space diagram for 15 s TOR.



Fig. 3.2. Example time-space diagram for 10 s TOR.

Fig. 3.3. Example time-space diagram for 5 s TOR.
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closer to the intersection (n = 210). There were more yielding events when the TOR was received at 15 s from the stop line
(n = 105) compared to the 10-s (n = 94) and 5-s (n = 85) TOR conditions. Yielding events were evenly split with respect to
secondary task, with participants yielding 142 times for the game and no-game conditions.

The decision to yield or go at the intersection is a binary choice that can be modeled by a linear probability model. Each
participant completed all 12 right-turn scenarios where a bicyclist was present; therefore, the dataset can be considered to
be a panel dataset. Panel data require replication of the same units over time (Wooldridge, 2016). A fixed-effects linear prob-
ability model was created using Stata to determine the effect that the independent variables had on a driver’s decision to
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yield or go at the intersection. Widely used for panel data analysis, fixed-effects models can be used to estimate the effect of
individual variables when all other variables remain constant (Wooldridge, 2016). Using a fixed-effects model helps control
for omitted variable bias. Data were clustered by participant to account for individual differences between drivers. Bicyclist
proximity to the intersection (t ¼ �9:23; P < 0:001Þ and a 5-s TOR (t ¼ �9:23; P ¼ 0:003Þ had significant effects on the
probability of a driver yielding to the bicyclist (Table 3.1).

As TOR proximity decreased from 15 s to 5 or 10 s, the probability of yielding decreased. A TOR at 5 s from the stop line
decreased the probability that a driver would yield by 11.6% compared to the 15-s condition. As bicyclist proximity from the
intersection changed from closer to farther, the probability that a driver would yield decreased by 52.3%.

3.1.2. TTC calculation
To investigate the effect of the independent variables on the collision avoidance behavior of the drivers, the TTC value was

calculated for each of the 226 observations where a driver did not yield to the bicyclist at the intersection. Gettman et al.
(2008) defined TTC as the expected time for two vehicles to collide if they remain at their present speed and path. TTC is
an important measure of the likelihood of a collision. Generally, a vehicle-bicycle interaction with a TTC of 2 s or less is con-
sidered a conflict (Sayed, Zaki, & Autey, 2013). SAE J2944 (2015) defers to the methodology presented by Van Der Horst
(1990) when calculating TTC. For a RH crash scenario where the subject vehicle turns in front of the bicyclist, this procedure
can be simplified, as described in Hurwitz et al. (2015).

Bicycle location and vehicle centroids were recorded in the driving simulator. Distances between the vehicle and bicyclist
were calculated from their centroids by using the following equations (Hurwitz et al., 2015):
Table 3
Fixed-e
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vb;vv ;¼ velocity of bicycle and subject vehicle, respectively (where the bicyclist traveled at a constant velocity of 16 mph,
or 7.15 m/s)
wv ¼width of subject vehicle
lb; lv ;¼ length of bicycle and subject vehicle, respectively
d ¼ distance from middle point of the side of the car and front of the bicycle
s ¼ center-to-center distance between bicycle and car (Fig 3.4).

3.1.3. TTC results
In total, there were 516 right-turn maneuvers in the presence of a bicyclist (43 participants by 12 intersections with bicy-

clists present). Of these, 226 maneuvers resulted in an interaction between the subject vehicle and bicyclist (defined as the
vehicle turning in front of the bicyclist and not yielding at the intersection). Table 3.2 shows the minimum TTC measure-
ments for each of these 226 maneuvers. Comparing interactions by bicyclist location, more interactions occurred when
the bicyclist was farther from rather than closer to the stop line (79.7% vs. 20.3%). The number of interactions with bicyclists
was about equal among participants who were not playing the bubble game (n = 114) and those who were (n = 113). Two
right-hook collisions were recorded.

Most of the higher-risk interactions (TTC � 2 s) occurred when participants were distracted by the secondary task (n = 18)
or when the TOR occurred within 5 s of the stop line (n = 15) (Table 3.2). Interactions with the bicyclist farther from the stop
.1
ffects linear probability model on a driver’s yielding decision.

ble Category Coefficient Standard Error t P

(Dependent Var.):
(1 if driver yields to bicyclist, 0 otherwise)

– – – – –

tive Bicycle Position:
(1 if bike is farther from stop line, 0 if closer)

– �0.5233 0.0567 �9.23* <0.001

ndary Task:
(1 if playing game, 0 if not)

– �0.0039 0.0204 �0.19 0.851

(2 for 5 s TOR, 1 for 10 s TOR, 0 for 15 s TOR)
TOR = 2
TOR = 1

�0.1163
�0.0523

0.0367
0.0318

�3.17*

�1.64
0.003
0.108

R2(within subjects) 0.4174

Number of Obs. 516
Number of Groups 43
Obs. Per Group 12

tistically significant at 95% confidence interval.



Fig. 3.4. TTC calculation for RH crash scenario (Hurwitz, 2015).

Table 3.2
TTC results.

Relative position of bicyclist Secondary Task TOR (s) TTC (s) Total

0–0.99 1.0–1.5 1.51–2.0 2.0+

Closer to stop line (46) Game
(25)

5 2 2 3 3 10
10 3 3 2 1 10
15 0 0 1 4 5

No Game
(21)

5 1 1 5 2 9
10 0 0 1 7 8
15 0 0 1 3 4

Farther from stop line (181) Game
(88)

5 0 1 0 33 34
10 0 0 1 26 27
15 0 0 0 27 27

No Game
(93)

5 0 0 0 33 33
10 0 0 0 30 30
15 0 0 0 30 30

Total 6 7 14 199 226
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line typically had higher TTC values, with only two higher-risk interactions. By contrast, for bicyclists closer to the stop line,
there were 25 higher-risk interactions. When the TOR occurred 5 s before the stop line, there were a greater number of
higher-risk interactions (n = 15) compared to when the TOR occurred at 10 s (n = 10) or 15 s (n = 2) from the stop sign. Both
vehicle-bicyclist collisions occurred when the bicyclist was closer to the stop line and the participant was distracted by the
secondary task (see Fig. 3.4).

Fig. 3.5 demonstrates that the three independent variables had some influence on TTC. The strongest difference in mean
TTC values was observed between the two bicycle positions (MCloser ¼ 1:81 s; SDCloser ¼ 0:785 s; MFarther ¼
4:28 s; SDFarther ¼ 0:911 sÞ. Mean TTC under the 15-s TOR condition ðM15s ¼ 4:35 s; SD15s ¼ 1:217 sÞ was longer than the
mean TTC values under the 5-s ðM5s ¼ 3:45 s; SD5s ¼ 1:255 sÞ and 10-s ðM10s ¼ 3:65 s; SD10s ¼ 1:373 sÞ TOR conditions.
There was a slight difference in mean TTC values between secondary task conditions (MGame ¼ 3:58 s; SDGame ¼
1:425 s; MNo Game ¼ 3:97 s; SDNoGame ¼ 1:209 sÞ.

Repeated-measures analysis of variance (ANOVA) is typically used to analyze data when each participant is exposed to all
possible combinations of independent variables, resulting in multiple measurements for each participant (Ramsey & Schafer,
2013). However, there were numerous cases where a participant yielded to the bicyclist, resulting in no TTC measurement.
Such unbalanced data can be problematic for performing repeated-measures ANOVA. To analyze the unbalanced dataset
while still accounting for the effect of multiple measurements across individual participants, ANOVA tests were performed
using subjects as a blocking factor (Ramsey & Schafer, 2013). The results are shown in Table 3.3.

Pairwise comparisons of the main effect of each independent variable were analyzed by using Tukey-corrected post-hoc
tests. Regardless of TOR proximity or secondary task, participants had larger mean TTC values when the bicyclist was farther
from the stop line (P < 0.001). Regardless of bicycle position or TOR proximity, participants engaged in the secondary task
had a smaller TTC value (P = 0.001). The 15-s TOR condition was associated with significantly larger mean TTC values com-
pared to the 5- and 10-s conditions (P = 0.002, P = 0.0021).



Fig. 3.5. Boxplots of independent variables and TTC.

Table 3.3
Blocking design ANOVA results on TTC (s).

Blocking Factor df F P

Participant 40 6.07* <0.001

Within-Subjects Factors df F P

Relative Bicycle Position 1 315.87* <0.001
Secondary Task 1 15.87* <0.001
TOR 2 8.84* <0.001
Relative Bicycle Position � Secondary Task 1 0.84 0.361
Relative Bicycle Position � TOR 2 0.46 0.635
Secondary Task � TOR 2 2.37 0.097
Relative Bicycle Position � Secondary Task � TOR 2 0.52 0.597

Error 180

Note: F denotes F statistic; df denotes degrees of freedom.
* Statistically significant at 95% confidence interval.
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3.2. Visual attention results

The visual attention of motorists can generally provide direct evidence of whether a driver recognizes and anticipates a
hazard (Fisher et al., 2011). Visual attention data were gathered and reduced for the 34 participants with complete eye-
tracking data. Five participants had partial eye-tracking data because the participant accidentally adjusted their glasses
and ruined the calibration. Four participants could not be calibrated for eye-tracking.

3.2.1. Total Fixation Duration (TFD)
For each right-turn scenario, the number and length of participants’ fixations on various areas of interest (AOIs) were

recorded. AOIs were created for the bicyclist when it was ahead of the vehicle, behind the vehicle, or viewed through the
rear-view or side-view mirrors. The TFD was generated by averaging all participant’s fixations in each scenario for each
AOI, with a TFD of zero indicating that the participant did not fixate on a particular AOI during that scenario. A higher
TFD indicates greater interest in the AOI. TFD measurements can help determine whether a driver identifies critical elements
in a visual scene (Reyes & Lee, 2008). A fixation on the bicyclist was recorded if the participant fixated on the bicyclist when
it was ahead of the vehicle or visible in the rear-view or side-view mirrors. The sum of these fixations across each scenario
indicates the TFD for the bicyclist.

A repeated-measures ANOVA test was conducted to determine whether the TFD differed between scenarios. As Mauchly’s
sphericity assumption was not met, Huynh-Feldt adjusted P-values are reported (Abdi, 2010). Table 3.4 shows the repeated-
measures ANOVA results.

Bonferroni-corrected post-hoc tests were performed for pairwise comparisons of the main effect of each independent
variable. Regardless of TOR proximity or secondary task, participants fixated on the bicyclist significantly longer on average



Table 3.4
Repeated-measures ANOVA results for TFD on the bicyclist (seconds).

Within-Subjects Factors F(v1, v2) P g2
p

Relative Bicycle Position 19.27 (1, 33)* <0.001 0.369
Secondary Task 21.05 (1, 33)* <0.001 0.389
TOR 40.21 (2, 66)* <0.001 0.549
Relative Bicycle Position � Secondary Task 1.00 (1, 33) 0.325 0.029
Relative Bicycle Position � TOR 12.68 (2, 66) * <0.001 0.278
Secondary Task � TOR 4.04 (2, 66)* 0.032 0.109
Relative Bicycle Position � Secondary Task � TOR 2.01 (2, 66) 0.142 0.057

Note: F denotes F statistic; v1 and v2 denote degrees of freedom; g2
p denotes partial eta squared.

* Statistically significant at 95% confidence interval.
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when the bicyclist was closer to the stop line (P < 0.001). Regardless of the relative bicycle position or TOR proximity, par-
ticipants engaged in the secondary task fixated on the bicycle significantly less frequently (P < 0.001). There was a significant
difference among all TOR conditions (P < 0.001 for all comparisons), with drivers fixating on the bicyclist significantly longer
as TOR proximity increased.

3.2.2. Time to first bicycle fixation
During scenarios with a bicyclist, the bicyclist was not visible to the participant until 10 s before the participant received a

TOR. To determine when the participant first identified the bicyclist in the bike lane, the time to first bicycle fixation was
calculated. A time of zero indicates that the participant identified the bicyclist immediately when it entered the roadway.
Data were visualized as boxplots of time to first bicycle fixation, disaggregated by independent variables (Fig. 3.6). On aver-
age, participants who were engaged in the secondary task took about 4.5 s longer to identify the bicyclist on the roadway
(MGame ¼ 11:25 s; SDGame ¼ 5:88 s; MNo Game ¼ 6:70 s; SDNo Game ¼ 6:28 sÞ.

Twenty participants identified and fixated on all 12 bicyclists in the experiment. Repeated-measures ANOVA was con-
ducted on the data from these 20 participants to determine whether the time to first bicycle fixation differed between sce-
narios. As shown in Table 3.5, relative bicycle position (P ¼ 0:002Þ, secondary task (P < 0:001Þ, and TOR proximity
(P ¼ 0:005Þ had significant main effects on the time to first bicycle fixation. A statistically significant interaction was found
between the combined effects of relative bicycle position and secondary task on the time to first bicycle fixation (P ¼ 0:026Þ.
Among independent variables, the change in TOR proximity had the highest effect on the time to first bicycle fixation,
accounting for about 55% of within-subject variance.

Bonferroni-corrected post-hoc tests for pairwise comparisons of the main effect of TOR proximity revealed that regardless
of the bicyclist position or secondary task, there was a difference between the 15-s TOR condition and the two other TOR
conditions. Drivers in the 15-s condition fixated on the bicyclist significantly later than in the other TOR conditions
(P = 0.025, P = 0.039).
Fig. 3.6. Time to first bicycle fixation.



Table 3.5
Repeated-measures ANOVA results on time to first bicycle fixation (seconds).

Within-Subjects Factors F(v1, v2) P g2
p

Relative Bicycle Position 12.96 (1, 19)* 0.002 0.405
Secondary Task 39.68 (1, 19)* <0.001 0.676
TOR 6.14 (2, 38)* 0.005 0.244
Relative Bicycle Position � Secondary Task 5.80 (1, 19)* 0.026 0.234
Relative Bicycle Position � TOR 0.59 (2, 38) 0.559 0.030
Secondary Task � TOR 1.24 (2, 38) 0.302 0.061
Relative Bicycle Position � Secondary Task � TOR 1.59 (2, 38) 0.218 0.077

Note: F denotes F statistic; v1 and v2 denote degrees of freedom; g2
p denotes partial eta squared.

* Statistically significant at 95% confidence interval.
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4. Conclusions

The goal of this research was to investigate how human drivers of AVs interact with bicyclists during a right-turn maneu-
ver after receiving a TOR. Changes in driver performance, including visual attention and crash avoidance behavior, were mea-
sured by using a high-fidelity driving simulator. Overall, the results across performance measures consistently showed that
the independent variables had an effect on participant driving performance. These results indicate that there is a difference
between how individual drivers avoid colliding with a bicyclist after receiving a TOR on the approach to an intersection.

When all other variables were held constant, participants were 11.6% less likely to yield to a bicyclist when presented
with a TOR 5 s from an intersection compared to participants presented with a TOR 15 s from an intersection. Drivers
who received a TOR farther from the intersection identified the bicyclist earlier and fixated on the bicyclist for longer com-
pared to drivers who received a TOR closer to the intersection. When drivers were given more time to respond (i.e., TOR of
15 s vs. 10 or 5 s from the intersection), the mean TTC between the vehicle and bicyclist was significantly longer, indicating a
safer vehicle-bicyclist interaction and a lower likelihood of collision. This research demonstrates that when given a 3-s TOR
alert, drivers require between 10 and 15 s before an intersection to safely interact with a bicyclist and avoid a RH crash. Dri-
vers who received a TOR farther from the intersection generally identified the bicyclist earlier and had safer interactions with
the bicyclist, either choosing to yield or safely turning with ample space between the vehicle and bicyclist.

Driver involvement in a secondary task before receiving a TOR had a significant effect on the driver’s visual attention.
Drivers who were playing the game took longer to identify the bicyclist and fixated for a shorter time on the bicyclist. Drivers
who played the game while the car was driving in L3 automation mode had significantly lower mean TTC values, indicating
that the interactions were less safe. Although L3 AVs may not be marketed to consumers as a way to take their mind off the
task of driving, it is inevitable that some drivers will attend to a secondary task in the AV. The results of this study demon-
strate that such secondary task involvement increases the probability of having higher-risk interactions with bicyclists while
turning right at an intersection.

Although this research provides valuable insight on the interaction of L3 automation and human drivers in close proxim-
ity to an intersection in the presence of a bicyclist, there are limitations associated with this work. Like most within-subject
study designs, there are limitations associated with possible fatigue and carryover effects, which can cause a participant’s
performance to degrade during an experiment. The magnitude of these effects was limited by randomizing the presentation
of grids to different participants and keeping the drive lengths brief. In addition, the number and levels of independent vari-
ables that were investigated were limited by the total drive time. In particular, the length of the TOR alert was kept constant
at 3 s. There may be more variation in this alert time in real L3 vehicles. Furthermore, for many participants, this was their
first experience driving an AV. Drivers with greater L3 AV experience would potentially exhibit different driving behavior.

This area of human factors research is relatively uninvestigated, yet is crucial for understanding the safety implications of
L3 AVs in urban environments. Future studies should address additional variations in the independent variables, such as dif-
ferences in the distracting tasks, TOR alerts, or bicyclist behavior. The secondary task could be offered optionally instead of
prescriptively to drivers to determine the threshold at which they would feel comfortable engaging in a secondary task. Dri-
ver perception of automation could be more fully investigated, to determine whether drivers would feel comfortable using
L3 automation in their personal vehicle. The time between scenarios could be varied to determine the threshold for the num-
ber of TORs that a driver would be willing to endure to achieve the benefits of automation. Finally, similar scenarios could be
examined from the bicyclist’s perspective. Using driving simulation, an L3 AV could be coded based on the real-world behav-
ior collected through this study, or by using networked simulation pairing a human driver and a human bicyclist.
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Appendix A. Supplementary material
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