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A B S T R A C T   

The ability of automated vehicles (AV) to avoid accidents in complex traffic environments is the 
focus of considerable public attention. Intel has proposed a mathematical model called 
Responsibility-Sensitive Safety (RSS) to ensure AVs maintain a safe distance from surrounding 
vehicles, but testing has, to date, been limited. This study calibrates and evaluates the RSS model 
based on cut-in scenarios in which minimal time-to-collision (TTC) is less than 3 s. Two hundred 
cut-in events were extracted from Shanghai Naturalistic Driving Study data, and the corre
sponding scenario information for each event was imported into a simulation platform. In each 
scenario, the human driver was replaced by an AV driven by the model predictive control-based 
adaptive cruise control (ACC) system embedded with the RSS model. The safety performance of 
three conditions, the human driver, RSS-embedded ACC model, and ACC-only model, were 
evaluated and compared. Compared to the performance of human drivers and ACC-only algo
rithm respectively, the RSS model increased the average TTC per event by 2.86 s and 0.94 s, 
shortened time-exposed TTC by 1.34 s and 0.65 s, and reduced time-integrated TTC by 0.91 s2 and 
0.72 s2. These changes indicate that the RSS-embedded ACC model can improve safety perfor
mance in emergent cut-in scenarios. The RSS model can therefore be applied as a security 
guarantee, that is, to ensure the AV’s timely awareness and response to dangerous cut-in situa
tions, thus mitigating potential conflict.   

1. Introduction 

As the automated vehicle (AV) moves closer toward general use, its safety has become the focus of significant public attention. 
According to the 2018 annual autopilot report released by California’s Department of Motor Vehicles, even the vehicle produced by 
Waymo, the most successful company in the field of automated driving, still requires manual intervention every 8.95 thousand ki
lometers (CA, 2018); that is, an accident may occur if the vehicle continues to be automatically driven without timely human 
intervention. To increase AV dependability and avoid traffic accidents, it is essential to standardize the AV’s safety assurance. 

Adaptive cruise control (ACC), one of the more widely used advanced driver assistance systems (ADAS), is the most commonly 
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employed AV control algorithm. As it has been demonstrated to stably and efficiently control a vehicle’s longitudinal relative distance 
from the lead vehicle ahead (Gerhard et al., 2005; Magdici and Althoff, 2017), ACC has gradually become a common feature in vehicle 
configuration. However, since the goal of ACC is to maintain a safe distance in normal driving conditions, if an event requiring a quick 
response occurs, for example, if an adjacent vehicle suddenly changes lanes to cut in front of the subject vehicle, the ACC system will be 
deactivated and the driver will be required to take over control of the vehicle (Alipour-Fanid et al., 2017; Milanes et al., 2014). 

A cut-in event, in which a vehicle changing lanes enters a space relatively close to vehicles in the targeted lane, while not within the 
definition of normal driving conditions, is a commonplace driving scenario. Studies have demonstrated that cut-in behavior is likely to 
cause traffic congestion, conflicts, and even crashes. In 2015, illegal lane changing and illegal overtaking accounted for 4.9% of the 
total number of crashes in China (Traffic Management Bureau of Public Security Ministry, 2016). In the United States, the 240,000 to 
610,000 traffic crashes each year due to improper lane changes account for 6% of all crashes (Hou et al., 2015). Because cut-in 
behavior deactivates ADAS, it is clear that cut-ins adversely affect the safety performance of AVs (Dou et al., 2016; Zhou and Peng, 
2005). To mitigate crash risk, the ACC system needs to be improved to better respond to the cut-in scenario. 

The Responsibility-Sensitive Safety (RSS) model, developed by Intel Mobileye, formalizes human drivers’ subjective and inter
pretable principles of safety in a rigorous mathematical model (Shashua et al., 2019). The model defines the safe distance for all driving 
scenarios, provides the AV with an appropriate response to evade dangerous situations, and assigns responsibility for traffic crashes 
accordingly, that is, to those vehicles that do not follow the defined appropriate response. Thus, RSS can enhance the AV’s safety by 
being applied as a constraint to the AV’s ACC algorithm. RSS has a range of customizable parameters that can be set according to the 
human driver’s personal driving style, thereby making the AV more comfortable and predictable, or “human-like,” and consequently 
safer (Mattas et al., 2019). In this study, we integrated RSS into the ACC system, that is, we modified the ACC algorithm by integrating 
into it the RSS model (Takahama and Akasaka, 2018), for the purpose of evaluating RSS’s ability to improve the AV’s safety per
formance in suddenly emerging cut-in scenarios. 

Naturalistic driving data provides an opportunity to observe cut-in events during real-world driving. The Shanghai Naturalistic 
Driving Study (SH-NDS), the first naturalistic driving study (NDS) in China, was conducted from 2012 to 2015. By recording drivers’ 
behavior with high-accuracy sensors and cameras during their daily driving, kinematic data such as acceleration, speed, relative speed, 
and distance from the surrounding vehicles were continuously collected (Eskandarian, 2012). By December 2015, 161,055 km of 
driving data from 60 drivers had been collected, a quantity that contained abundant kinematic and video data for cut-in scenario 
identification and analysis. 

From the SH-NDS data, this study retrieved emergent cut-in events, recovering the trajectory and speed of the subject vehicle 
(vehicle responding to the cut-in) to simulate virtual scenarios in which the subject vehicle was replaced by an AV controlled by the 
ACC algorithm embedded with RSS. The safety performance of the RSS-embedded ACC model was compared to that of the ACC-only 
model by estimating the time-to-collision (TTC) surrogate safety indicators of time-exposed TTC and time-integrated TTC. For eval
uating the safety impact of RSS on emergent cut-in scenarios, this study found the optimal set of parameters that can make the RSS 
model achieve the best performance, thereby enhancing the safety of both the AV and the human-driven vehicles. 

2. Data preparation 

2.1. Shanghai Naturalistic driving study 

The lane changing data used in this study were collected from the SH-NDS, which was jointly conducted by Tongji University, 
General Motors (GM), and the Virginia Tech Transportation Institute (VTTI). Five GM light vehicles were equipped for the study with 
Strategic Highway Research Program 2 (SHRP2) NextGen Data Acquisition Systems (DAS). 

The DAS includes an interface box for collecting vehicle controller area network (CAN) data, an accelerometer, radar system, light 
meter, temperature/humidity sensor, GPS sensor, and four synchronized cameras. The accelerometer captures the longitudinal and 
lateral acceleration of the experimental vehicle, and the radar system measures the range and range rate to the vehicle in front, or lead 
vehicle (LV), and to vehicles in the adjacent lanes. The GPS sensor identifies the position of the experimental subject vehicle, and the 
four camera views can be used to verify the various sensor data (Wang et al., 2019). 

By December 2015, 161,055 km of driving data from 60 drivers had been collected. The 60 participants in the Shanghai Naturalistic 
Driving Study (SH-NDS) were randomly sampled from the population of licensed Shanghai drivers. The distributions of their gender, 
age, and driving experience accord with those of the general Chinese driving population. The drivers had an average age of 38.43 and 
an average driving experience of 8.34 years. Just over 20% were women, which is comparable to the 23.48% proportion of women in 
the 2014 Chinese driving population (Traffic Management Bureau of the Ministry of Public Security). All participants were non- 
professional drivers who owned vehicles, had at least 2 years of driving experience, and had the need to drive daily (Zhu et al., 
2018). They were relatively safe drivers: over half had received no traffic violations in the last 2 years, and of those violations, over half 
were for illegal parking. Just under half had been involved in crashes in the last 2 years, most of which were property damage only. 

2.2. Cut-in scenario and extraction 

The focus of this study is the emergent cut-in event in which a lane changing vehicle (LCV) cuts suddenly in front of the subject NDS 
vehicle, making the DAS-equipped NDS vehicle, for our purposes, the following vehicle (FV), and the LCV the lead vehicle (LV). The 
FV’s radar records basic information such as the position, velocity and acceleration of the LV and vehicles in adjacent lanes, permitting 
extraction of the LCV’s data. 

S. Liu et al.                                                                                                                                                                                                              



Transportation Research Part C 125 (2021) 103037

3

Fig. 1 shows a typical NDS cut-in scenario and its AV simulation: the main difference is that the FV changes from the NDS vehicle to 
the simulated AV. Fig. 2 further illustrates the potential cut-in with images taken from an NDS FV’s forward camera. In SH-NDS data, 
T0 is the LV position directly in front of the NDS. As shown in Fig. 2, The red LV directly in front of the FV’s camera view is in the T0 
position in the target lane. If the FV’s radar records a change in the position of a vehicle from the adjacent lane toward the T0 position, 
the vehicle is determined to be an LCV intending to execute a lane change into the targeted FV lane. In Fig. 2, the blue car is the LCV 
taking over the T0 position. If the lane change meets the X-Range critical condition defined below, it is determined to be a cut-in 
maneuver, and the LCV can be labeled a cut-in vehicle (CV) as in Fig. 2 (Wang et al., 2019). 

Cut-in events were extracted for this study from the volume of naturalistic driving data, as illustrated in Fig. 3. 
The cut-in events were automatically extracted from the NDS data by applying a filter, an iterative process where initial criteria and 

thresholds followed the procedure adopted by Wang et al. (2019) and Wang and Xu (2019). Brief descriptions of the event extraction 
thresholds are as follows:  

• FV and LCV speeds greater than 1 m/s, ensuring that both cars are always in motion.  
• FV’s maximum lateral acceleration is less than 0.07 g, and the lane offset is less than 1.7 m, both of which ensure that the FV will not 

move laterally.  
• The Y-range (lateral, or transverse, distance from LCV to FV) is less than 2.2 m, indicating that the LCV has begun to move to the 

FV’s (target) lane; and the Y-range is less than a maximum of 1.2 m to ensure that the LCV has become stable in the target lane. 
Together, these standards ensure that the LCV has changed lanes.  

• The maximum X-Range (longitudinal distance from LCV to FV) is defined as 75 m. This threshold, determined by 200 observations 
in this study, prevents inclusion of lane changes that are so far ahead of the FV that the FV is unlikely to be affected by them.  

• The minimum TTC less than 3 s limits extracted lane changes to sudden cut-in events. 

The last two criterion define a cut-in. That is, they distinguish it from a relatively safe lane change. Through automatic extraction, 
we obtained an initial total of 5,339 cut-in events, defined as a lane change into a space shorter than 75 m from the FV in the target 
lane. The final criterion of TTC under 3 s was applied to limit the sample to the most sudden and therefore dangerous cut-ins, resulting 
in a final total of 200 cut-in events being selected for study. All of the 200 were manually verified by the forward roadway camera 
video, ensuring that all LCVs had indeed moved from adjacent lanes into the NDS FV target lanes. The manual verification process also 
confirmed the type of road and LCV (e.g., car or truck), as well as weather and lighting conditions, and turn signal usage at the time of 
the cut-in event (Yang et al., 2019). 

Once the LCV has taken over the T0 position, it becomes the lead vehicle (LV). The next step toward generating the simulated 
scenario was calculation of the LV’s longitudinal trajectory by removing the noise coming from the sensors. The trajectory can be 
calculated by using this equation: 

LVPosition(i+1) = LVPosition(i) +Vi*t+
1
2
ait2 (1) 

In Equation (1),LVPosition(i) is the cumulative position of the LV in the longitudinal direction, V is the LV’s velocity, and a is its 

Fig. 1. LCV position and motion recorded by radar in potential cut-in scenario.  
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acceleration, all at timestampi with t as time interval (0.1 s) and i as the simulation step. 
Noise in the data generated backward movements in the trajectory, which, as shown in Fig. 4, caused the LV to drift and become 

unstable during the simulation. By using Equation (1) to remove the noise, the backward movements are eliminated and the line is 
smoothed. The calculation also ensured that no timestamp had zero speed value, thereby permitting the simulation to work properly. 

Finally, because the LV’s longitudinal trajectory data changed substantially in a short time, the simulated LV was longitudinally 
unstable. As shown in Fig. 5, locally estimated scatterplot smoothing (LOESS) was used with span = 0.1 to overfit and smooth the 
relative longitudinal distance. 

3. Methodology 

3.1. Safety distance in RSS model 

In the RSS model, safety distance consists of two measures: longitudinal and lateral. During cut-in events, the rear vehicle needs to 
pay close attention to the front vehicle, the relative position of which changes both longitudinally and laterally (Shashua et al., 2019; 

Fig. 2. FV radar target T0 change, detecting a cut-in of the blue car from adjacent lane.  

Fig. 3. Cut-in event extraction algorithm.  
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Mattas et al., 2019). In most cases, the RSS rear vehicle corresponds to the NDS FV in the current study, and the front vehicle to the LV, 
or LCV. 

Let υr, υf be the longitudinal velocities of the rear vehicle cr and the forward vehicle υf , respectively. The minimum safe longitudinal 
distance between cr and cf is: 

dmin =

[

υrρ +
1
2
amax,accelρ2 +

(
vr + ρamax,accel

)2

2amin,brake
−

v2
f

2amax,brake

]

+

(2) 

In Equation (2), amax,brake is the acceleration of cf and amax,accel is the acceleration of cr during the response time ρ. After ρ, cr will brake 
by at least amin,brake until it reaches a full stop so it will not collide with cf . [x]+ = max{x,0}. 

Let υ1and υ2 be the lateral velocities of the vehicles cr and cf , respectively, during the time interval [0, ρ], as cr and cf perform 
alat

max,brake as they move toward each other. υ1,ρ denotes υ1 + alat
max,accelρ, and υ2,ρ denotes υ2 − alat

max,accelρ. The two vehicles will then apply 
lateral braking of amin,brake until they reach zero lateral velocity, after which the final lateral distance between them will be at least μ. 

Fig. 4. Backward movements in LV trajectory and solution.  

Fig. 5. Relative longitudinal distance smoothed with LOESS.  
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The minimal safe lateral distance between cr and cf is: 

dlat
min = μ+

[
υ1 + υ1,ρ

2
ρ +

υ2
1,ρ

2alat
min,brake

−

(
υ2 + υ2,ρ

2
ρ −

υ2
2,ρ

2alat
min,brake

)]

+

(3) 

In the current study, the longitudinal and lateral distances between the LCV and the NDS FV were detected by the NDS sensors. 
These distances were reproduced in the simulation as the distances between the simulated LCV and autonomous vehicle (AV) which 
replaced the NDS FV and which was modeled with the RSS-embedded ACC algorithm. At each simulation step, the RSS-defined safe 
longitudinal and lateral distances were calculated using the relative speed and distances detected between the LCV (front vehicle, in 
RSS terms) and the AV (rear vehicle). If the current distance was less than the RSS safety distance, the RSS algorithm would be 
triggered and the AV would decelerate at the RSS minimum deceleration. Otherwise, the AV would remain under the control of the 
ACC algorithm. 

3.2. Surrogate safety measurements 

As crashes are relatively infrequent, a sufficient sample size of crash data is often unavailable. Potential conflicts and near crashes 
are much more frequent and are positively related to crashes, so alternative approaches (Hydén, 1987; Oh and Kim, 2010) such as 
surrogate safety measurements (SSM) are commonly used to evaluate safety performance. SSM, also known as safety indicators, can be 
used to quantify the occurrence and severity of potential crash risk and vehicle conflict (Zheng et al., 2014). These indicators are 
derived from vehicle interaction analysis, including time-dependent vehicle movements, risk avoidance behavior, and safety margin of 
conflicts (Shi et al., 2018). 

Time-to-collision (TTC) is the most widely used SSM (Zheng et al., 2014). Defined by the time it would take two vehicles to collide if 
they continued on their current course (Minderhoud and Bovy, 2001), a lower TTC value represents a more severe conflict. A TTC 
threshold is therefore commonly set to distinguish between safe and unsafe driving interactions (Nilsson et al., 1993; Hirst, 1997; 
Sultan et al., 2002; Li et al., 2014, 2016,2017). Potential two-vehicle conflicts are thus generally identified from raw kinematic data by 
using a predefined TTC threshold, normally of 3 s. If the minimum TTC in a given dynamic conflict process is less than 1 s, the conflict is 
commonly considered severe. Li et al. (2016), Li et al. (2017), Rahman and Abdel-Aty (2018) and Tu et al. (2019) all used TTC as the 
SSM to assess the safety performance of ACC systems. After conducting sensitivity analysis, all four studies found that setting different 
TTC thresholds ranging from 1 to 3 s had no significant impact on final results. In this study, the TTC threshold was therefore set to 3 s 
in order to select a reasonably broad representation of typical cut-in events. TTC is computed by the following equation: 

TTCi(t) =

⎧
⎨

⎩

xi− 1(t) − xi(t) − Li− 1

νi(t) − νi− 1(t)
νi(t) > νi− 1(t)

∞ νi(t) ≤ νi− 1(t)
(4)  

where xi(t) is the position of the FV (i) at timestamp t, Li - 1(t) is the length of the LV (i-1), and νi(t) is the velocity of the FV (i) at 
timestamp t. 

As minimum TTC is an instantaneous variable, time-exposed TTC (TET) and time-integrated TTC (TIT) are derived from TTC to 
evaluate the duration and integration of TTCs below a certain threshold (Horst, 1991). TET and TIT are calculated by 

TETi =
∑N

t=0
δi(t) ⋅ τsc (5)  

δi(t) =
{

1 ∀0 ≤ TTCi(t) ≤ TTC*

0 otherwise (6)  

TITi =
∑N

t=0
[TTC* − TTCi(t)] ⋅ τsc (7)  

∀0 ≤ TTCi(t) ≤ TTC* (8) 

where δi(t) is a variable that switches between 1 (signaling a risky condition) and 0 (non-risky), τsc is the observation time interval 
(e.g. 0.1 s), and TTC∗ is the TTC threshold value (e.g. 3 s) (Nie et al., 2017). 

3.3. Simulation platform 

The MATLAB Automated Driving Toolbox™ provides autonomous vehicle and automated driving algorithms. This study uses two 
of its modules for testing the RSS-embedded ACC model:  

1. The Vehicle and Environment module is responsible for simulating the dynamics of the AV, or ego vehicle (EV), driver steering, and 
reading the scenario from the NDS. The EV detects its surrounding environment with a 150-m range camera and a 174-m range 250- 
degree radar detector, and then sends the information to the ACC module described below. 
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2. The Adaptive Cruise Control (ACC) with Sensor Fusion module is responsible for taking together the output information from the 
EV (AV) detectors, and the information the EV obtains from the NDS scenario. The module then analyses both sets of data to obtain 
the most important object (MIO), which is the point in the LV nearest to the EV. The relative distance and relative speed between 
the EV and the MIO are calculated, and the information is sent to module predictive control (MPC). MPC makes the decision to 
decelerate or accelerate, and the decision is then sent to the Vehicle and Environment module above. 

To evaluate RSS, this study compares two versions of the ACC model: with and without RSS. The RSS-embedded ACC model uses 
the RSS parameters of Equation (2) in Section 3.1. The ACC-only model uses its own equation for calculating the safe distance (dsafe) 
between the LV and AV. The ACC equation, however, has been found to lead to overlarge distances between the LV and EV, and its 
deceleration rate is insufficient to prevent crashes or reduce the severity of a conflict. The equation for dsafe is: 

dsafe = ddefault + Tgap × Vx (9) 

where the default spacing ddefault and time gap Tgap are ACC design parameters; Vx is the AV’s longitudinal velocity. 
To compare the models, two steps were taken:  

1. Running the ACC-only model using the values in Table 1 for the 200 events.  
2. Running the RSS-embedded ACC model after the RSS parameters of Equation (2) are calibrated on the simulation results from the 

ACC-only model. 

The safety performance of the RSS-embedded ACC model is highly affected by parameters in both the ACC and RSS algorithms. ACC 
reaction time, especially in commercial vehicles, has been found to be slightly shorter than that of human drivers, with values from 0.5 
to 1.0 s demonstrated in previous studies (Zhu et al., 2020; Chai et al., 2019). Additionally, maximum and minimum deceleration rates 
in the RSS and ACC algorithms conform with each other. Specifically, this conformity ensures that the minimum deceleration rate 
cannot be too low, as the model may still be functional enough to help the AV avoid potential danger. According to Equation (2), the 
maximum deceleration also cannot be too high; otherwise the RSS safety distance will be too large, forcing the AV to maintain an 
overlarge distance from the cut-in vehicle. Maintaining this distance would result in an overly conservative model and extravagant use 
of road resources. 

Employing the simulation parameters listed in Table 1, the Simulink module of MATLAB 2019a was used to build the simulations. 
The 200 events selected from SH-NDS data were converted into Simulink scenarios: for each virtual scenario, the trajectory and speed 
of the cut-in vehicle, or LCV, and the initial speed and position of the subject vehicle, or FV, were maintained from the original NDS 
event. An AV controlled by ACC-only or RSS-embedded ACC replaced the original subject vehicle, from which it inherited initial speed 
and position. 

3.4. Calibration of RSS model 

The aim of calibrating the RSS-embedded ACC model is to use parameter values for Equation (2) that maximize safety while 
ensuring the model is not too conservative. As noted in Step 2 above, the calibration was conducted on the data generated by the ACC- 
only simulation. Each event had its own distinct duration, which was defined by the number of rows in the data generated by the 
simulation. The simulation interval, or step, was 0.1 s. The objective function, described further below, is defined as: 

Minimize
∑E

i=1

[
∑T1 i

t=t*
(TTC* − TTCi(t))/(TTC*.(#ofsteps))

]

+
∑e

i=1

[
∑T2 i

t=trss i
absolute(dminrss i (t) − drelativei (t) )/(drelativei (t).(T2 i − trss i)) − (T2 i − trssi )/(T2 i.e)

]

where ∀0 ≤ TTCi(t) ≤ TTC∗

∀1 ≤ E, e ≤ 200

(10) 

E is the total number of events that did not result in accidents, TTC* is critical time-to-collision (3 s), t* is the first time step when 
TTC was lower than TTC*, T1 is the last time step when TTC < TTC*, and (#ofsteps) is the number of steps taken when TTC was lower 
than TTC* with respect to ∀0 ≤ TTCi(t) ≤ TTC*. 

Table 1 
Simulation Algorithm Parameters for ACC-only model.  

Description Values 

Time of deceleration 0 s 
ACC deceleration rate − 2 m/s2  

ACC reaction time 0.5 s 
ACC default space (ddefault) 3.5 m 
ACC time gap (Tgap) 1.5 s  
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dminrss i (t) is the output from Equation (2), and drelativei (t) is the distance between LV and EV. e is the number of events without 
accidents and dminrss i (t) > drelativei (t) for at least one time step, which means RSS was ready to be activated. trss i is the step wherein RSS 
can be activated and dminrss i (t) > drelativei (t), and T2 i is the total number of steps in the event (Time*10). 

The objective function consists of three areas related to safety, conservativeness, and time of RSS activation. The example in Fig. 6 
shows the parameters (dminrss i (t),drelativei , TTC, TTC*) of the objective function generated by using the calibrated values: 

Descriptions of the three areas and their processes are as follows:  

1. Safety area:  
•
∑T1 i

t=t* (TTC* − TTCi(t)) is the area between TTC* and TTC less than 3 s during the simulation of a specific event, depicted by the blue 
area in Fig. 6. The smaller the area, the safer the event.  

• The area is divided by TTC* to decrease the objective function unit and to describe it as a percentage.  
• The area is also divided by (# of steps) to obtain the percentage for each time step in order to assist comparison between the three 

areas of the objective function. Because the conservativeness area will be larger than the safety area, reducing the effect of the 
safety area in the calibration process, the percentage must be known to identify which area is most important.  

2. Conservativeness area:  
• The distance between LV and EV should not be too large, that is, too conservative, which can happen when the difference between 

dminrss i and drelativei is small. Because dminrss i is the safe distance at which the EV should remain so as to avoid a crash, the distance is 
almost enough if dminrss i is equal to drelativei .  

• The 
∑T2 i

t=trss i
absolute

(
dminrss i (t) − drelativei (t)

)
area is calculated after trss i because it indicates the RSS will be activated. The “absolute” 

is necessary because if dminrss i (t) < drelativei (t), the area will have a negative value and will thus reduce the objective function 
incorrectly.  

• The area is divided by drelativei to decrease the objective function unit and to describe it as a percentage.  
• The area is also divided by (T2 i − trss i), which is the # of steps in the orange area, to make it easier to compare the three areas. The 

sum of this area’s events is e rather than E because e includes only the events in which RSS must be activated; that is, non-dangerous 
events are excluded.  

3. Time of RSS activation area:  
• The earlier the RSS model activates, the safer the vehicle will be. The TTC will not have entered the critical level, and the 

conservativeness area will be smaller because the RSS-embedded model will have attempted to minimize the area by making 
dminrss i (t)anddrelativei (t) almost equal.  

• The sign of this area is negative, which indicates that the larger the number of events that RSS activates, the smaller the objective 
function will be. The aim is to force the objective function to choose a set of parameters that activate RSS earlier for every event.  

• Early RSS activation means that (T2 i − trssi ) will be larger because trssi will be smaller; thus it is always better to activate RSS earlier.  
• This area is divided by T2 i to decrease it and to describe it as a percentage.  
• This area is also divided by e to obtain the average percentage per event and to make the area smaller than 1.0. 

Fig. 6. Simulation results from ACC-only model for an event i = 48.  
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This study makes some assumptions:  

• The calibration calculates the dmin for the RSS, but does not activate the RSS model.  
• All the events with accidents in the ACC-only model are removed from the calibration because after the crash occurs, the relative 

distance becomes negative and then zero because there is no longer any distance between the FV and LV.  
• The steps with relative distance under 1 m are removed. In the objective function, the conservativeness area is divided by drelativei 

and will be very large if drelativei < 1; consequently, these steps would generate incorrect results for the objective function. Only 34 
out of the 34,052 steps from all events have drelativei < 1.  

• In Fig. 6, TTCs longer than 10 s are shown as 10 s for simpler visualization. 

The genetic algorithm (GA) is a widely implemented calibration method. The GA is effective at finding a model’s optimal parameter 
combination as it possesses the advantage of being able to solve both constrained and unconstrained global optimization problems 
while avoiding local minima (Saifuzzaman et al., 2015; Zhu et al., 2018). GA proceeds as follows: 1) a population consisting of N 
individuals is initialized, and each individual refers to a random parameter that is set, for this study, in the RSS model; 2) the fitness of 
each individual is calculated by the predefined objective function; 3) crossovers between randomly selected individual pairs (parents) 
and mutations within randomly selected individuals are implemented to produce individuals of the next generation (children); and 4) 
steps 2 and 3 are repeated until the termination criteria are satisfied. 

It is important to choose the proper GA parameters for calibrating micro-simulation models. If the population is too small and 
sparsely spread, then the lack of genetic diversity may lead to quick convergence on local optima before the better optima may be 
visited. On the other hand, excessively large populations cause the GA to act like a random search algorithm (Ma and Abdulhai, 2001). 
Previous research has employed a variety of specific values (Table 2). Despite the caution from Ma and Abdulhai, the most recent 
studies, Saifuzzaman et al. (2015) and Zhu et al. (2018), used large values for the three GA parameters. 

The genetic algorithm function in R was used in this study, and the GA parameter values used by Zhu et al. (2018) were adopted 
because both studies used the same data source, the Shanghai Naturalistic Driving Study (SH-NDS). The GA parameters for RSS 
calibration were thus specified as follows: population size 300, maximum number of generations 300, and number of stall generations 
100. The maximum number of generations controlled the number of iterations. Since GA is a stochastic process, each optimization run 
produces a different solution. To find the solution closest to the global optimum, the optimization process was repeated 6 times, and 
the parameter combination with the minimum objective function was selected. 

While running the GA on ACC-only scenarios, it was found that GA was reaching the global optima at a generation of 220–270 out 
of 300. This confirmed the study’s choice to use 300 as the maximum number of generations, as it gave the GA the ability to reach the 
global optima. 

4. Results 

4.1. RSS calibration results 

Before running the GA, the upper and lower bounds of each parameter in the objective function needed to be estimated. Histograms 
were generated from the SH-NDS data to identify the real bounds of the RSS parameters during the cut-in events. 

Using the standard maximum comfortable deceleration of 3 to 3.5 m/s2 (Xu et al., 2021; Bokare and Maurya, 2017; Maurya and 
Bokare, 2012) along with the acceleration data depicted in Fig. 7, the bounds for the four parameters were estimated. Table 3 shows 
the bounds and results for each parameter in each of the six GA calibration runs. 

As can be seen in Table 3, Run 1 had the lowest minimum value for the objective function. Run 1 parameter values were therefore 
used to run the RSS-embedded ACC model and to calculate the minimum safety distance using the following equation: 

dmin =

[

0.496υr + 1.542*ρ2 +
(vr + 3.084ρ)2

6.964
−

v2
f

11.376

]

+

(11) 

The 95% quantile of lateral acceleration from the SH-NDS data was used as the maximum lateral acceleration in the RSS model, 
with a value set at 0.68 m/s2. In order to exclude crash events, the 75% quantile was used to set the RSS minimum lateral brake rate at 
0.45 m/s2, and the minimal lateral distance was set at 0.2 m. The formula for calculating the transverse safety distance for the RSS 
model is, therefore, as shown in Equation (12). 

Table 2 
GA parameters used for calibrating micro-simulation models.  

Research Population Size Maximum number of generations Stall generations 

Zhu et al. (2018) 300 300 100 
Saifuzzaman et al. (2015) 200 600 100 
Ma et al. (2007) 30 20 —— 
Kim et al. (2005) 30 150 100 
Schultz and Rilett (2004) 30 40 ———  
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dlat
min = 0.2+

[
2υ1 + 0.337

2
× 0.496 +

(υ1 + 0.337)2

0.900
−

(
2υ2 − 0.337

2
× 0.496 −

(υ2 − 0.337)2

0.900

)]

+

(12)  

4.2. Summary of simulation results 

In the simulated 200 cut-in events, the AV reproduced the initial speed and position taken by the original NDS vehicle, but oc
casionally chose to accelerate and overtake the lane changing vehicle (LCV) instead of decelerating to open a safer gap. In these 
scenarios, the AV started to decelerate when the ACC algorithm detected an emergent cut-in, but if the level of deceleration was not 
enough to keep the AV behind the LCV, the AV quickly changed strategies to attempt to overtake the LCV. Consequently, either a crash 
occurred or the LCV abandoned its intent to change lanes. In either case, the intended cut-in failed, so we considered these scenarios 
invalid for our purposes. Because valid, or completed, cut-ins result from adequate AV deceleration, they tend to have lower initial AV 
speed and shorter relative longitudinal distance. 

Fig. 7. Bounds of acceleration in NDS data for all events.  

Table 3 
Summary of parameter estimates produced by the 6 GA optimization runs.  

Parameters (Units) Bounds Parameter estimates for each optimization run 

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 

ρ (s) [0.1, 0.5] 0.496 0.498 0.497 0.498 0.495 0.494 
amax,accel (m/s2) [1.5, 3.1] 3.084 3.047 3.037 3.046 3.068 3.053 
amin,brake (m/s2) [-4, − 2] 3.482 3.592 3.376 3.591 3.600 3.668 
amax,brake (m/s2) [-7, − 5] 5.688 6.031 5.531 6.041 6.110 6.479 
Objective function value ¡0.22807 − 0.227 − 0.22493 − 0.2267 − 0.22673 − 0.22649  

Table 4 
AV’s initial speed and distance for valid and invalid events.   

Valid events Invalid events 

ACC-only RSS-embedded ACC-only RSS-embedded 

Initial speed (m/s) Range [2.11, 30.87] [2.11,30.87] [8.45, 22.15] / 
Mean 11.16 11.40 14.69 11.45 
Std. 5.53 5.50 3.81 / 

Initial longitudinal distance (m) Range [4.42, 52.85] [4.42,66.09] [14.33, 66.09] / 
Mean 18.22 19.43 35.69 23.83 
Std. 9.98 11.48 16.82 / 

Number of events 185 199 15 1  
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Both valid and invalid events were analyzed for ACC-only and RSS-embedded ACC. Results are shown in Table 4. 
As can be seen in Table 4, the higher number of valid events and lower number of invalid events for the RSS-embedded model 

implies that it was both more effective and conservative in dealing with dangerous cut-in scenarios. After comparing the mean and 
standard deviation of the AV’s initial longitudinal speed and distance for valid and invalid events, further observations can be made:  

1) The average AV initial speed for ACC-only is 11.16 m/s for valid events, which is 3.53 m/s lower than the 14.69 m/s speed for the 
invalid events. For RSS-embedded, the average initial speed of the valid events is 11.40 m/s, approximately the same as for the 
invalid events at 11.45 m/s.  

2) As noted above, the AV’s average initial longitudinal distance from the cut-in vehicle is shorter in the valid events for both models. 
For ACC-only, the average initial longitudinal distance of the valid events is 18.22 m, which is 17.47 m shorter than the 35.69 m 
distance for invalid events. For RSS-embedded, the distance for the valid events is 19.43 m, just 4.40 m shorter than the 23.83 
distance of the invalid events. 

The above findings indicate that the AV algorithm was more likely to perceive and react to the potential cut-in events when the AV 
began with a lower longitudinal speed and a shorter longitudinal distance from the cut-in vehicle. 

4.3. Safety performance evaluation 

The distributions of average longitudinal acceleration, speed, relative longitudinal distance, and relative lateral distance for each 
valid cut-in event are illustrated in Fig. 8 in the form of boxplots, where values for the RSS-embedded ACC and ACC-only models are 
compared with each other and with the NDS human driver model. 

As shown in Fig. 8(a), the longitudinal acceleration of human drivers has the narrowest range, with a median of approximately 
− 0.02 m/s2. The average acceleration of RSS-embedded ACC (-0.80 m/s2) is the lowest, with a median of − 0.69 m/s2. The average 
acceleration of the ACC-only algorithm (-0.59 m/s2, with a median of − 0.41 m/s2) differs little from RSS-embedded. 

Fig. 8(b) indicates that the average longitudinal speed differs only slightly between human drivers and the AV algorithms, with the 
ACC-only being most similar. The distribution of human drivers’ speed is concentrated at 8.92 m/s and the average for ACC-only is 
8.76 m/s, while that of RSS-embedded is 8.39 m/s. 

Fig. 8. Average kinematics values for all valid events.  
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In Fig. 8(c), the average longitudinal relative distance and distribution range can be seen to increase left to right, which indicates 
that the AV algorithms improve safety by enlarging the cut-in gaps. RSS-embedded ACC is the most conservative. 

Fig. 8(d) compares the lateral safety distance distributions of the three models, but it should be noted that the RSS lateral distance 
parameters were not calibrated with the GA algorithm because simulation results showed that none of the models triggered the RSS 
minimum final lateral distance, which, according to Equation (3), is set to μ = 0.2 m. Because any collision of two vehicles requires 
extreme proximity both laterally and longitudinally, the lateral comparisons were, therefore, based on a range incorporating the RSS 
minimum relative longitudinal distance of 4.7 m, the average length of a vehicle. To compare the lateral safety distance distributions, 
Fig. 8(d) therefore uses a longitudinal relative distance within 4.7 m. It should also be noted that because longitudinal and lateral 
relative distances together signify the likelihood of a collision, an increase in one direction can permit a shorter distance in the other. 
As seen in Fig. 8(c), the RSS algorithm increases the longitudinal relative distance; as the longitudinal distance increases, the number of 
events that trigger RSS due to their short lateral relative distance is reduced. For human drivers, the relative lateral distance between 
vehicles is concentrated between 0.03 m and 1.19 m, with an average distance of 0.61 m; for ACC-only, the concentration is 2.34–3.38 
m, and is 2.23–3.27 m for RSS-embedded. Both the ACC-only and RSS-embedded ACC algorithms can thus improve the lateral relative 
distance over that of the human driver. 

Fig. 9 illustrates the distributions in the three models for minimum TTC (time-to-collision), TET (time-exposed TTC), and TIT (time- 
integrated TTC). As one of the criteria for selection of emergent cut-in events from NDS data was that the minimum TTC was lower than 
3 s, the human driver minimum TTC is distributed between 0.5 and 3 s; it is concentrated between 1 and 3 s, with an average of 2.14 s. 
Minimum TTC distribution in the ACC-only model begins below 1 s, is concentrated above 5.5 s, and averages 4.06 s. The shorter 
minimum TTC at the low end of the ACC-only distribution indicates that it increased the risk in some cut-in events; that is, it would not 
be as effective in these events as human drivers. In the RSS-embedded ACC model, however, not only is the minimum TTC distribution 
concentrated in the area above 1 s, but also, the average is increased to 5 s. This increase implies that the safety risk is mitigated when 
RSS is integrated into ACC. 

Since TET and TIT represent, respectively, the duration and integration of TTCs shorter than 3 s, the lower the TET and TIT values, 
the safer the cut-in event is considered. TET for human drivers is generally distributed between 0.5 and 6 s, averages 1.64 s, and for 
92% of the events, is concentrated between 0.5 and 3 s. TET for ACC-only is concentrated between 0 and 6 s with an average of 0.95 s; 
that is, events with TTC less than 3 s had a duration of 0.95 s on average. In RSS-embedded ACC, TET is concentrated between 0 and 
just 2.5 s, has an average of 0.3 s, and for 78% of events it is concentrated at 0 s, indicating that the improved safety performance of 
RSS-embedded is significant. Although the distributions and averages in Fig. 9(b) indicate that both ACC-only and RSS-embedded can 
enhance safety performance as compared with human drivers, RSS-embedded performed more effectively in reducing TTC duration, 
with the TET distribution being barely a third of ACC-only. 

Similar observations can be made for the TIT indicator. TIT is distributed between 0 and 3.5 s2 for RSS-embedded ACC, which is 
clearly less than that of the human driver. The average value is 0.19 s2, which is less than one-fifth that of ACC-only (0.90 s2) and less 
than one-sixth that of the human driver (1.10 s2). 

Fig. 10 shows the TIT distribution for the human driver compared to the reduced distribution for ACC-only and RSS-embedded. The 
horizontal and vertical coordinates represent the initial speed and longitudinal distance, respectively, of each set of the corresponding 
events. The color at the various coordinates illustrates the extent to which the human driver TIT is improved by the two algorithms: the 
7 on the color scale indicates greatest improvement, so the warmer the color, the greater the degree of improvement. 

Fig. 10(a) shows that human driver TIT is improved by ACC-only within certain limited ranges, as indicated, for example, by the 
yellow areas at an initial distance of 30–40 m with an initial speed lower than 10 m/s, and an initial distance larger than 30 m with an 
initial speed higher than 20 m/s. The fewer number and lower intensity of blue areas in Fig. 10(b) illustrate the more overall 
improvement with RSS-embedded. Additionally, Fig. 10(b)’s generally larger and warmer yellow areas in the upper right quadrant, 
depicting events with larger initial distance and higher initial speed, show RSS’s more significant improvement over the human driver 
than is evident for ACC-only. The difference between the models is even more apparent in the upper left quadrants, that is, in events 
with large initial distance but low initial speed. Calculation shows that RSS-embedded decreased the average TIT per event by 0.91 s2 

and 0.72 s2 as compared to the performance of human drivers and ACC-only algorithm, respectively. 

5. Discussion and conclusion 

Adaptive cruise control (ACC), commonly used for automated vehicle (AV) control, has demonstrated success in normal driving 
conditions. The Responsibility-Sensitive Safety (RSS) algorithm can help the AV to respond safely to more urgent events, but testing 
has been limited. This study has therefore evaluated RSS’s safety impact on a vehicle in the case of a suddenly emergent cut-in. The 
trajectory and speed of the cut-in vehicle and the initial speed of the subject vehicle were extracted from 200 cut-in events observed in 
the Shanghai Naturalistic Driving Study (SH-NDS) data. The event information was imported into a simulation platform in which the 
human driver was replaced by an AV controlled by the ACC algorithm with and without RSS. Three models were developed, human 
driver, ACC-only, and RSS-embedded ACC, and were tested through the MATLAB Simulink module. 

The safety performance of the RSS-embedded ACC algorithm was found superior to both the performance of the SH-NDS human 
drivers and the ACC-only algorithm. The RSS-embedded ACC simulation generated a greater number of valid cut-ins, that is, events in 
which the AV decelerated to open a safer gap, rather than the more dangerous response of accelerating to overtake the prospective cut- 
in vehicle. Additionally, RSS-embedded ACC generated events with an average initial speed and relative distance of 11.40 m/s and 
19.43 m, respectively, both larger values than human driver or ACC-only events. 

Time-to-collision (TTC) values were improved by the RSS-embedded algorithm. Compared to the performance of human drivers 
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and the ACC algorithm on its own, the RSS model increased the average TTC per event by 2.86 s and 0.94 s, respectively. The AV 
decelerated rapidly after RSS was triggered, reducing the required longitudinal safety distance and decreasing the time-integrated TTC 
(TIT) by an average of 0.91 s2 for human NDS events and 0.72 s2 for ACC-only events, thereby mitigating the potential emergency. 
Time-exposed TTC (TET), decreased an average of 1.34 s and 0.65 s for RSS-embedded events, and its distribution was within 0–2.5 s, 
narrower than that of the human NDS or ACC-only events. For 78% of events in the RSS model, TET was concentrated at 0 s, a better 
ratio than that of the NDS events (0%) and ACC-only (59%). As the longitudinal relative distance between the two vehicles increased in 
the RSS-embedded model, the risk of lateral collision during a cut-in scenario was simultaneously reduced. 

In addition to this study’s positive results, RSS, as an algorithm independent safety guarantee model, can be applied to guarantee 
the safety performance of multiple autonomous driving algorithms. However, neither ACC-only nor RSS-embedded ACC can mitigate 
all hazards related to emergent cut-in events. Although ACC is currently marketed in the automobile industry as a driving algorithm for 
low levels (not fully autonomous) of automated vehicles, ACC is fundamentally a longitudinal vehicle control algorithm. The RSS 
parameters are fixed, so the AV’s lateral movement cannot be controlled in RSS-embedded ACC simulation scenarios. Since the RSS 
minimum lateral distance between the two vehicles was not triggered in the simulation, the lateral parameters of the RSS model were 
selected according to the data statistics, requiring recalculation for correction based on RSS lateral safety distance. Although simu
lation results show that the selected parameter sets were effective and not too conservative for the simulated scenarios, in future 
studies, more combinations of RSS parameters should be tested and compared for optimization. 

A last limitation is that the TTC threshold was set to 3 s in this study in order to select a broad representation of cut-in events. In 
future research, a greater variety of emergent cut-in scenarios should be simulated. 

Fig. 9. Distributions of minimum TTC, TET and TIT for the human driver, ACC-only, and RSS-embedded ACC models.  

Fig. 10. Improvement of TIT through ACC-only and RSS-embedded.  
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